

MONTAGE- UND BEDIENUNGSANLEITUNG

COSMO Multi 3

ASSEMBLY AND OPERATING INSTRUCTIONS COSMO Multi 3

1214766

SICHERHEITSHINWEISE

SICHERHEITSHINWEISE

Bitte beachten Sie diese Sicherheitshinweise genau, um Gefahren und Schäden für Menschen und Sachwerte auszuschließen.

Gefahr durch elektrischen Schlag:

- Bei Arbeiten muss das Gerät zunächst vom Netz getrennt werden.
- Das Gerät muss jederzeit vom Netz getrennt werden können.
- Das Gerät nicht in Betrieb nehmen, wenn sichtbare Beschädigungen bestehen.

Das Gerät darf nicht von Kindern oder von Personen mit reduzierten körperlichen, sinnlichen oder geistigen Fähigkeiten oder ohne Erfahrung und Wissen verwendet werden. Sicherstellen, dass Kinder nicht mit dem Gerät spielen!

Nur vom Hersteller autorisiertes Zubehör an das Gerät anschließen! Vor Inbetriebnahme sicherstellen, dass das Gehäuse ordnungsgemäß verschlossen ist. Vor der Übergabe an den Betreiber den Kunden-Bedienercode eingeben!

VORSCHRIFTEN

Beachten Sie bei Arbeiten die jeweiligen, gültigen Normen, Vorschriften und Richtlinien!

ZIELGRUPPE

Diese Anleitung richtet sich ausschließlich an autorisierte Fachkräfte.

Elektroarbeiten dürfen nur von Elektrofachkräften durchgeführt werden.

Die erstmalige Inbetriebnahme hat durch autorisierte Fachkräfte zu erfolgen.

Autorisierte Fachkräfte sind Personen, die über theoretisches Wissen und Erfahrungen mit Installation, Inbetriebnahme, Betrieb, Wartung etc. elektrischer/elektronischer Geräte und hydraulischer Systeme sowie über Kenntnis von einschlägigen Normen und Richtlinien verfügen.

ANGABEN ZUM GERÄT

BESTIMMUNGSGEMÄSSE VERWENDUNG

Der Systemregler ist zur elektronischen Steuerung und Regelung thermischer Solar- und Heizungssysteme unter Berücksichtigung der in dieser Anleitung angegebenen technischen Daten bestimmt.

Jede Verwendung darüber hinaus gilt als bestimmungswidrig.

Zur bestimmungsgemäßen Verwendung zählt die Einhaltung der Vorgaben dieser Anleitung. Die bestimmungswidrige Verwendung führt zum Ausschluss jeglicher Haftungsansprüche.

Starke elektromagnetische Felder können die Funktion des Gerätes beeinträchtigen.
 → Sicherstellen, dass Gerät und System keinen starken elektromagnetischen Strahlungsquellen ausgesetzt sind.

EU-KONFORMITÄTSERKLÄRUNG

Das Produkt entspricht den relevanten Richtlinien und ist daher mit der CE-Kennzeichnung versehen. Die Konformitätserklärung kann beim Hersteller angefordert werden.

LIEFERUMFANG

Der Lieferumfang dieses Produktes ist auf dem Verpackungsaufkleber aufgeführt.

LAGERUNG UND TRANSPORT

Das Produkt bei einer Umgebungstemperatur von 0...40°C und in trockenen Innenräumen lagern.

Das Produkt nur in der Originalverpackung transportieren.

REINIGUNG

Das Produkt mit einem trockenen Tuch reinigen. Keine aggressiven Reinigungsmittel verwenden.

DATENSICHERHEIT

Es werden regelmäßige Backups der auf dem Gerät gespeicherten Daten über die SD-Karte empfohlen.

SICHERHEITSHINWEISE

AUSSERBETRIEBNAHME

- 1. Das Gerät von der Spannungsversorgung trennen.
- 2. Das Gerät demontieren.

ENTSORGUNG

Verpackungsmaterial des Gerätes umweltgerecht entsorgen.

Altgeräte müssen durch eine autorisierte Stelle umweltgerecht entsorgt werden. Auf Wunsch nehmen wir Ihre bei uns gekauften Altgeräte zurück und garantieren für eine umweltgerechte Entsorgung.

SYMBOLERKLÄRUNG

Warnhinweise sind mit einem Warnsymbol gekennzeichnet!

Signalwörter kennzeichnen die Schwere der Gefahr, die auftritt, wenn sie nicht vermieden wird.

bedeutet, dass Personenschäden, unter Umständen auch lebensgefährliche Verletzungen auftreten können.

→ Es wird angegeben, wie die Gefahr vermieden werden kann!

ACHTUNG bedeutet, dass Sachschäden auftreten können.

→ Es wird angegeben, wie die Gefahr vermieden werden kann!

æ

Hinweise sind mit einem Informationssymbol gekennzeichnet.

- → Textabschnitte, die mit einem Pfeil gekennzeichnet sind, fordern zu einer Handlung auf.
- 1. Textabschnitte, die mit Ziffern gekennzeichnet sind, fordern zu mehreren aufeinanderfolgenden Handlungsschritten auf.

Inhaltsverzeichnis

Taskaisska Dater und Eugliticasübereiskt 4			
lecr	INISCHE Daten und Funktionsubersicht 4		
1.	Installation5		
1.1	Montage5		
1.2	Elektrischer Anschluss6		
1.3	Datenkommunikation/Bus7		
1.4	Zentrale Außensensoreinheit		
1.5	SD-Karteneinschub		
2	Schrittweise Einstellung 9		
2. 3	Bedienung und Eunktion 10		
0. 0.1	Tastan 10		
3.1 2.0	Idstell		
3.Z	Merupurikte anwanien und werte einstellen 10		
3.3	Urlaubstage einstellen 11		
3.4	Timer einstellen12		
3.5	Wahlfunktionen einstellen 16		
3.6	Untermenü Ausgang17		
3.7	Sensorkonfiguration		
4.	Inbetriebnahme21		
4.1	Grundsysteme		
4.2	Übersicht über die Ausgangsbelegun-		
	gen/Sensorbelegungen23		
5.	Hauptmenü		
5.1	Menüstruktur 33		
6	Status 34		
0. 4 1	Mass / Pilanzworta 24		
0.1	Color 24		
6.Z	Solar		
6.3	Aniage		
6.4	Heizung		
6.5	WMZ		
6.6	Meldungen		
6.7	Home Screen		
7.	Solar		
7.1	Grundeinstellung		
7.2	Wahlfunktionen		
7.3	Funktionskontrolle		
74	Expertenmenü Solar 50		
8	Anlage 51		
0. Q 1	Wahlfunktionon 51		
0.1			
У. О 1	Reizulig		
9.1	Gemeinsame Relais		
9.2	Heizkreise		
9.3	Wahlfunktionen		
9.4	Estrich-Trocknung73		
10.	WMZ75		
11.	Grundeinstellungen77		
12.	SD-Karte		
13.	Handbetrieb80		
14.	Bedienercode81		
15.	Eingänge / Module		
15.1	Module 82		
15.2	Fingänge 82		
15.2	RU 02		
12.0	Echlorsucho 94		
10.	Index 20		
1/.			
18.	EU-KONTORINITATSERKIARUNG		
19.	Garantie, Gewahrleistung,		
00	Natizan		
20.	NUTIZEN		

2

TECHNISCHE DATEN UND FUNKTIONSÜBERSICHT

- 7 Relaisausgänge und 10 Eingänge für Temperatursensoren Pt1000, Pt500 oder KTY
- Bis zu 3 Erweiterungsmodule über VBus® (insgesamt 28 Sensoren und 22 Relais)
- Eingänge für analoge Grundfos Direct Sensors™ sowie Feuchtesensoren FRH
- Integrierte Ansteuerung von bis zu 4 Hocheffizienzpumpen über PWM-Ausgänge
- Datenaufzeichnung, -sicherung, Firmware-Updates und einfache Datenübertragung vorbereiteter Einstellungen über SD-Karte
- Kühlung über den Heizkreis mit Kondensationserkennung
- Taupunktberechnung mithilfe des Feuchtesensors FRH zur Kondensationsvermeidung
- Vereinfachte Wochenzeitschaltuhr, 0-10-V-Kesselansteuerung und Brauchwasser-Vorerwärmung
- Fernzugriff auf die Heizkreise über Raumbediengerät(e) und über die VBus®Touch HC App
- Erweiterte Wahlfunktionen, z. B. Feststoffkesselfunktion mit Mischer- und Zieltemperaturregelung

TECHNISCHE DATEN

Eingänge:

10 Eingänge für Pt500, Pt1000- oder KTY-Temperatursensoren, 1 Impulseingang V40, Eingänge für 2 analoge Grundfos Direct Sensors™ oder Feuchtesensoren FRH, Eingang für 1 zentrale Außensensoreinheit

Ausgänge:

6 Halbleiterrelais,1 potenzialfreies Relais, 4 PWM-/0-10-V-Ausgänge

PWM-Frequenz:

512 Hz

PWM-Spannung:

10,5 V Schaltleistung:

1 (1) A 240 V~ (Halbleiterrelais) 2 (1) A 24 V—/240 V~ (potenzialfreies Relais)

Gesamtschaltleistung:

6,3 A 240 V~

Versorgung: 100-240 V~ (50-60 Hz))

Anschlussart:

Х

Standby:

ca. 1 W

Temperaturreglerklasse:

VIII Energieeffizienz-Beitrag:

5 %

Wirkungsweise:

Тур 1.В.С.Ү

Bemessungsstoßspannung: 25 kV

Datenschnittstelle:

VBus[®], SD-Karteneinschub VBus[®]-Stromausgabe: 60 mA

Funktionen:

Estrich-Trocknung, witterungsgeführte Heizkreisregelung, Nachheizung, Brauchwassererwärmung mit Vorrangschaltung, Zirkulation, Thermische Desinfektion, Wärmemengenzählung, Wahlfunktionen wie Festbrennstoffkessel, Rücklaufanhebung u. a.

Gehäuse:

Kunststoff, PC-ABS und PMMA

Montage:

Wandmontage, Schalttafel-Einbau möglich

Anzeige/Display:

Vollgrafik-Display, Betriebskontroll-LED (Tastenkreuz) und Hintergrundbeleuchtung

Bedienung:

7 Tasten Schutzart:

IP 20/DIN EN 60529

Schutzklasse:

Umgebungstemperatur:

0...40°C Verschmutzungsgrad:

2

Relative Luftfeuchtigkeit:

10...90 % Sicherung:

T6,3A

Maximale Höhenlage:

2000 m NN **Maße:** 198 x 170 x 43 mm

MASSE UND MINDESTABSTÄNDE

1.1 MONTAGE

 Sicherstellen, dass Gerät und System keinen starken elektromagnetischen Strahlungsquellen ausgesetzt sind.

Das Gerät ausschließlich in trockenen Innenräumen montieren.

Falls das Gerät nicht mit einer Netzanschlussleitung und einem Stecker ausgerüstet ist, muss das Gerät über eine zusätzliche Einrichtung mit einer Trennstrecke von mindestens 3 mm allpolig bzw. mit einer Trennvorrichtung (Sicherung) nach den geltenden Installationsregeln vom Netz getrennt werden können.

Bei der Installation der Netzanschlussleitung und der Sensorleitungen auf getrennte Verlegung achten.

Um das Gerät an der Wand zu montieren, folgende Schritte durchführen:

- 1. Kreuzschlitzschraube in der Blende herausdrehen und Blende nach unten vom Gehäuse abziehen.
- 2. Aufhängungspunkt auf dem Untergrund markieren und beiliegenden Dübel mit zugehöriger Schraube vormontieren.
- 3. Gehäuse am Aufhängungspunkt einhängen, untere Befestigungspunkte auf dem Untergrund markieren (Lochabstand 150 mm).
- 4. Untere Dübel setzen.
- 5. Gehäuse oben einhängen und mit unteren Befestigungsschrauben fixieren.
- 6. Elektrische Anschlüsse gemäß Klemmenbelegung vornehmen (siehe Seite 6).
- 7. Blende auf das Gehäuse aufsetzen.
- 8. Gehäuse mit der Kreuzschlitzschraube verschließen.

1.2 ELEKTRISCHER ANSCHLUSS

	GEFARR DURCH ELENTRISCHEN SCHLAG!
	Bei geöffnetem Gehäuse liegen stromführende Bauteile frei!
	Vor jedem Öffnen des Gehäuses das Gerät allpolig von der Netzspan- nung trennen!
ACHTUNG!	ELEKTROSTATISCHE ENTLADUNG!
ped	Elektrostatische Entladung kann zur Schädigung elektronischer Bauteile führen!
	➔ Vor dem Berühren des Gehäuseinneren für Entladung sorgen. Dazu ein geerdetes Bauteil (z. B. Wasserhahn, Heizkörper o. ä.) berühren.
HINWEIS:	aluse das Carätas an dia Natzspannung ist immar dar latzta Arhaiteschritti
	nuss des derates an die Netzspannung ist immer der ietzte Arbeitsschnitt:
Bei Verwe Option Dr	endung von nicht-drehzahlgeregelten Verbrauchern, z. B. Ventilen, muss die rehzahl auf Aus gestellt werden.
1 Das Gerät	: muss jederzeit vom Netz getrennt werden können.
→ Den N	letzstecker so anbringen, dass er jederzeit zugänglich ist.
→ Ist die	es nicht möglich, einen jederzeit zugänglichen Schalter installieren.
Wenn die schlusslei	Netzanschlussleitung beschädigt wird, muss sie durch eine besondere An- tung ersetzt werden, die beim Hersteller oder seinem Kundendienst erhältlich ist
Das Gerät nich	t in Betrieb nehmen, wenn sichtbare Beschädigungen bestehen!
Der Regler ist mit Ventil o. ä., anges	insgesamt 7 Relais ausgestattet, an die Verbraucher, z. B. eine Pumpe, ein chlossen werden können:
, . 0	
• Relais 1 6 sind	d Halbleiterrelais, auch für die Drehzahlregelung geeignet:
Relais 16 sind Leiter R1R6	d Halbleiterrelais, auch für die Drehzahlregelung geeignet:
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzloitor (-) 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock)
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (-) Relais 7 ist ein r 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) potenzialfreies Relais (Wechsler)
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (1) Relais 7 ist ein p Arbeitskontakt 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) potenzialfreies Relais (Wechsler) R7-A
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (-) Relais 7 ist ein p Arbeitskontakt Ruhekontakt 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) botenzialfreies Relais (Wechsler) R7-A R7-R
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (*) Relais 7 ist ein p Arbeitskontakt Ruhekontakt Mittenkontakt 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) potenzialfreies Relais (Wechsler) R7-A R7-R R7-M
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (2) Relais 7 ist ein p Arbeitskontakt Ruhekontakt Mittenkontakt Je nach Produktau dies nicht der Fall 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) botenzialfreies Relais (Wechsler) R7-A R7-R R7-M usführung sind Netzleitung und Sensoren bereits am Gerät angeschlossen. Ist , folgendermaßen vorgehen:
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (-) Relais 7 ist ein p Arbeitskontakt Ruhekontakt Mittenkontakt Je nach Produktau dies nicht der Fall Flexible Leitunger ben am Gehäuse 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) botenzialfreies Relais (Wechsler) R7-A R7-R R7-M Jusführung sind Netzleitung und Sensoren bereits am Gerät angeschlossen. Ist , folgendermaßen vorgehen: n müssen mit den beiliegenden Zugentlastungen und den zugehörigen Schrau- fixiert werden.
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (-) Relais 7 ist ein p Arbeitskontakt Ruhekontakt Mittenkontakt Je nach Produktau dies nicht der Fall Flexible Leitunger ben am Gehäuse Die Temperaturse GND anschließen. 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) potenzialfreies Relais (Wechsler) R7-A R7-R R7-M usführung sind Netzleitung und Sensoren bereits am Gerät angeschlossen. Ist , folgendermaßen vorgehen: n müssen mit den beiliegenden Zugentlastungen und den zugehörigen Schrau- fixiert werden. ensoren (S1 bis S10) mit beliebiger Polung an den Klemmen S1 bis S10 sowie
 Relais 1 6 sind Leiter R1 R6 Neutralleiter N Schutzleiter (2) Relais 7 ist ein p Arbeitskontakt Ruhekontakt Mittenkontakt Je nach Produktau dies nicht der Fall Flexible Leitunger ben am Gehäuse Die Temperaturse GND anschließen. Die Leitungen füh führen, in einem g längen sind abhär 	d Halbleiterrelais, auch für die Drehzahlregelung geeignet: (Sammelklemmenblock) (Sammelklemmenblock) potenzialfreies Relais (Wechsler) R7-A R7-R R7-M usführung sind Netzleitung und Sensoren bereits am Gerät angeschlossen. Ist , folgendermaßen vorgehen: n müssen mit den beiliegenden Zugentlastungen und den zugehörigen Schrau- fixiert werden. ensoren (S1 bis S10) mit beliebiger Polung an den Klemmen S1 bis S10 sowie ren Kleinspannung und dürfen nicht mit anderen Leitungen, die mehr als 50 V gemeinsamen Kanal verlaufen (einschlägige Richtlinien beachten). Die Leitungs- ngig vom Querschnitt.

Das Volumenmessteil V40 mit beliebiger Polung an die Klemmen IMP und GND anschließen. Die mit PWM/0-10 V gekennzeichnten Klemmen sind Steuerausgänge für Hocheffizienzpumpen (Anschluss siehe Abbildung).

Elektrischer Anschluss einer Hocheffizienzpumpe (HE-Pumpe)

Die Drehzahlregelung einer HE-Pumpe erfolgt über ein PWM-Signal/0-10-V-Ansteuerung. Zusätzlich zum Anschluss an das Relais (Spannungsversorgung) muss die Pumpe an einen der PWM-Ausgänge des Reglers angeschlossen werden. Im Einstellkanal Ausgang muss dazu eine der PWM-Ansteuerungsarten gewählt und ein Relais zugewi<u>es</u>en werden (siehe Seite 17).

HINWEIS:

Wenn Grundfos Direct Sensors ™ verwendet werden, den Sensor-Masse-Sammelklemmenblock mit PE verbinden.

Die analogen Grundfos Direct Sensors™ oder Feuchtesensoren FRH an den Eingängen Ga1 und Ga2 anschließen.

Die Stromversorgung des Reglers erfolgt über eine Netzleitung. Die Versorgungsspannung muss $100 \dots 240 V_{\sim} (50 \dots 60 Hz)$ betragen.

Die Netzleitung an den folgenden Klemmen anschließen:

Neutralleiter N

Leiter L

Schutzleiter (=) (Sammelklemmenblock)

WARNUNG! GEFAHR DURCH ELEKTRISCHEN SCHLAG!

L' ist ein dauerhaft spannungsführender abgesicherter Kontakt.

Vor jedem Öffnen des Gehäuses das Gerät allpolig von der Netzspannung trennen!

Leiter L' (L' wird nicht mit der Netzleitung angeschlossen. L' ist ein dauerhaft spannungsführender abgesicherter Kontakt)

Für die Vorgehensweise bei Inbetriebnahme siehe Seite 9.

1.3 DATENKOMMUNIKATION/BUS

Der Regler verfügt über den VBus[®] zur Datenkommunikation und übernimmt teilweise auch die Energieversorgung von externen Modulen. Der Anschluss erfolgt mit beliebiger Polung an den mit **VBus** gekennzeichneten Klemmen.

Über diesen Datenbus können ein oder mehrere VBus®-Module angeschlossen werden.

Während der Fernparametrisierung erscheint das Symbol 🖄, der Regler führt in dieser Zeit keine Regelfunktion aus.

1.4 ZENTRALE AUSSENSENSOREINHEIT

Der Regler verfügt über einen Eingang für eine zentrale Außensensoreinheit. Der Anschluss erfolgt mit beliebiger Polung an den mit **ZA** gekennzeichneten Klemmen.

Mehrere Regler können einen gemeinsamen Außentemperatursensor verwenden.

Die zentrale Außensensoreinheit ermittelt die Außentemperatur und leitet diesen Wert an die angeschlossenen Regler weiter.

Wenn eine zentrale Außensensoreinheit verwendet wird, ZA in der Sensorauswahl einstellen.

1.5 SD-KARTENEINSCHUB

Der Regler verfügt über einen SD-Karteneinschub.

Folgende Funktionen können mit einer SD-Karte ausgeführt werden:

- Mess- und Bilanzwerte auf einer SD-Karte speichern. Nach der Übertragung in einen Computer können die gespeicherten Werte beispielsweise mit einem Tabellenkalkulationsprogramm geöffnet und visualisiert werden.
- Einstellungen und Parametrisierungen am Computer vorbereiten und dann per SD-Karte auf den Regler übertragen.
- Einstellungen und Parametrisierungen auf der SD-Karte sichern und gegebenenfalls wiederherstellen.
- Im Internet verfügbare Firmware-Updates herunterladen und per SD-Karte auf den Regler aufspielen.

HINWEIS:

Für weitere Informationen zur Verwendung der SD-Karte siehe Seite 78.

2. SCHRITTWEISE EINSTELLUNG

Der COSMO Multi 3 ist ein Regler, der dem Benutzer eine große Funktionsvielfalt bietet. Gleichzeitig lässt er dem Benutzer sehr viel Freiheit bei der Konfiguration. Für die Realisierung einer komplexen Anlage ist daher eine sorgfältige Planung notwendig. Es empfiehlt sich, eine Systemskizze anzufertigen.

Wenn Planung, hydraulische Ausführung und elektrischer Anschluss abgeschlossen sind, folgendermaßen vorgehen:

1. Inbetriebnahmemenü durchlaufen

Nachdem das Inbetriebnahmemenü durchlaufen wurde (siehe Seite 21), können weitere Einstellungen vorgenommen werden. Durch einen Reset (siehe Seite 77) kann das Inbetriebnahmemenü jederzeit wiederholt werden. Dabei werden zusätzlich vorgenommene Einstellungen gelöscht.

Für genauere Informationen zum Inbetriebnahmemenü siehe Seite 21.

2. Sensorik anmelden

Wenn Volumenmessteile, Strömungsschalter, Grundfos Direct Sensors™, Volumenstromsensoren, Feuchtesensoren, Raumbediengeräte, Fernversteller, Schalter und/oder externe Erweiterungsmodule verwendet werden sollen, müssen diese im Menü Eingänge/Module angemeldet werden.

Für genauere Informationen zum Anmelden von Modulen und Sensoren siehe Seite 82. In einigen Funktionen steht bei der Sensorauswahl der Kanal **Sensorkonfig**. zur Verfügung, in dem nicht verwendete und nicht angemeldete Sensoren ausgewählt werden können. Der ausgewählte Sensoreingang wird automatisch auf den für die Funktion erforderlichen Sensortyp gestellt.

3. Wahlfunktionen und/oder Heizkreise aktivieren

Das solare Grundsystem ist bereits im Inbetriebnahmemenü abgefragt worden. Nun können Wahlfunktionen und/oder Heizkreise ausgewählt, aktiviert und eingestellt werden.

Funktionen, die einen Ausgang benötigen, kann ein beliebiger freier Ausgang zugewiesen werden. Der Regler schlägt immer den numerisch kleinsten freien Ausgang vor.

Sensoren können beliebig oft zugewiesen werden, ohne dass andere Funktionen beeinträchtigt werden.

Für genauere Informationen zu den solaren Wahlfunktionen siehe Seite 39.

Für genauere Informationen zu den Anlagen-Wahlfunktionen siehe Seite 51.

Für genauere Informationen zu Heizkreisen und Heizungs-Wahlfunktionen siehe Seite 60.

3.1 TASTEN

Der Regler wird über die 7 Tasten neben dem Display bedient, die folgende Funktionen haben:

- Taste 🕦 Herauf-Scrollen
- Taste 🗿 Herunter-Scrollen
- Taste 💿 Erhöhen von Einstellwerten
- Taste 🔄 Reduzieren von Einstellwerten
- Taste 💿 Bestätigen
- Taste 💿 Wechsel in das Statusmenü/den Schornsteinfegermodus (systemabhängig)
- Taste 🕝 Escapetaste für den Wechsel in das vorhergehende Menü/in den Menüpunkt Urlaubstage (5 s gedrückt halten, siehe Seite 11)

Betriebskontroll-LED (im Tastenkreuz)

Grün: Alles in Ordnung

Rot:Abbruch der Estrich-TrocknungRot blinkend:Fehler/Initialisierung/Schornsteinfegerfunktion aktivGrün blinkend:Handbetrieb/Estrich-Trocknung aktiv

3.2 MENÜPUNKTE ANWÄHLEN UND WERTE EINSTELLEN

Im Normalbetrieb des Reglers befindet sich das Display im Hauptmenü. Wenn für 1 min keine Taste gedrückt wird, erlischt die Displaybeleuchtung. Nach weiteren 4 min wechselt der Regler in den Home Screen (siehe Seite 35).

Um die Displaybeleuchtung zu reaktivieren, eine beliebige Taste drücken.

- → Um in einem Menü zu scrollen oder Werte einzustellen, wahlweise die Tasten 🕧 und 🗊 oder die Tasten 🕑 und 🕣 drücken.
- → Um ein Untermenü zu öffnen oder einen Wert zu bestätigen, Taste 🕤 drücken.
- → Um in das Statusmenü zu wechseln, Taste ⓒ drücken unbestätigte Einstellungen werden nicht gespeichert.
- → Um in das vorhergehende Menü zu wechseln, Taste ⑦ drücken unbestätigte Einstellungen werden nicht gespeichert.

Wenn längere Zeit keine Taste gedrückt wurde, wird die Einstellung abgebrochen und der vorherige Wert beibehalten.

Wenn hinter einem Menüpunkt das Symbol » zu sehen ist, kann mit Taste (5) ein weiteres Menü geöffnet werden.

Wenn vor einem Menüpunkt das Symbol \textcircled zu sehen ist, kann mit Taste s ein Untermenü aufgeklappt werden. Ist es bereits aufgeklappt, ist statt des t ein s zu sehen.

Status	Ŧ
Solar	
System	>>
Service	
Relaisauswahl	
🕨 🗆 Regler	
R1	
R2	

Werte und Optionen können auf verschiedene Arten eingestellt werden:

Zahlenwerte werden mit einem Schieber eingestellt. Links ist der Minimalwert zu sehen, rechts der Maximalwert. Die große Zahl oberhalb des Schiebers zeigt die aktuelle Einstellung an. Mit den Tasten 🕑 und 📢 kann der obere Schieber nach links und rechts bewegt werden. Erst wenn die Einstellung mit Taste 💿 bestätigt wird, zeigt auch die Zahl unterhalb des Schiebers den neuen Wert an. Wird er erneut mit Taste 🕥 bestätigt, ist der neue Wert gespeichert.

Wenn Werte gegeneinander verriegelt sind, bieten sie einen eingeschränkten Einstellbereich an, abhängig von der Einstellung des jeweils anderen Wertes.

In diesem Fall ist der aktive Bereich des Schiebers verkürzt, der inaktive Bereich wird als unterbrochene Linie dargestellt. Die Anzeige des Maximal- und Minimalwertes passt sich der Einschränkung an.

Wenn aus verschiedenen Auswahlmöglichkeiten nur eine wählbar ist, werden sie mit Radiobuttons angezeigt. Wenn ein Punkt angewählt wird, ist der Radiobutton ausgefüllt.

Wenn aus verschiedenen Auswahlmöglichkeiten mehrere gleichzeitig gewählt werden können, werden sie mit Checkboxen angezeigt. Wenn ein Punkt angewählt wird, erscheint ein **x** innerhalb der Checkbox.

3.3 URLAUBSTAGE EINSTELLEN

Mit dem Parameter Urlaubstage können die Tage der Abwesenheit eingestellt werden.

→ Um die Tage der Abwesenheit einstellen zu können, Taste 🗇 für 5 s gedrückt halten.

Für den eingestellten Zeitraum können damit folgende Funktionen deaktiviert bzw. in ihrem Verhalten angepasst werden:

- Solarteil (siehe Seite 50)
- Heizkreise (siehe Seite 66)
- Thermische Desinfektion (siehe Seite 69)
- BW-Erwärmung (siehe Seite 70)

Tageauswahl
Reset
zurück
Tageausw ahl
🗆 Mo-So
🗆 Mo-Fr
🗆 Sa-So
🛛 Mo
DDi
🛛 Mi
Do

□Fr □Sa

⊠So

3.4 TIMER EINSTELLEN

Wenn die Option **Timer** aktiviert wird, erscheint eine Wochenzeitschaltuhr, mit der Zeitfenster für den Betrieb der Funktion eingestellt werden können.

Im Kanal **Tageauswahl** stehen die Wochentage einzeln oder als häufig gewählte Kombinationen zur Auswahl.

Werden mehrere Tage oder Kombinationen ausgewählt, werden sie im Folgenden zu einer Kombination zusammengefasst.

Unter dem letzten Wochentag befindet sich der Menüpunkt **Weiter**. Wird **Weiter** angewählt, gelangt man in das Menü zur Einstellung der Zeitfenster.

Zeitfenster hinzufügen:

Um ein Zeitfenster hinzuzufügen, folgendermaßen vorgehen:

1. Neues Zeitfenster auswählen.

2. Anfang und Ende für das gewünschte Zeitfenster einstellen. Die Zeitfenster können in Schritten von je 5 min eingestellt werden.

3. Um das Zeitfenster zu speichern, den Menüpunkt **Speichern** anwählen und die Sicherheitsabfrage mit **Ja** bestätigen.

4. Um ein weiteres Zeitfenster hinzuzufügen, die vorhergehenden Schritte wiederholen. Es können 6 Zeitfenster pro Tag/Kombination eingestellt werden.

5. Linke Taste () drücken, um wieder zur Tageauswahl zu gelangen.

Zeitfenster kopieren:

Um bereits eingestellte Zeitfenster für einen weiteren Tag/eine weitere Kombination zu übernehmen, folgendermaßen vorgehen:

1. Den Tag/die Kombination auswählen, für die Zeitfenster übernommen werden sollen, und **Kopieren von** anwählen.

Eine Auswahl der bisher mit Zeitfenstern versehenen Tage und / oder Kombinationen erscheint.

2. Den Tag/die Kombination auswählen, dessen/deren Zeitfenster übernommen werden sollen.

Alle für den ausgewählten Tag/die ausgewählte Kombination eingestellten Zeitfenster werden übernommen.

Wenn an den kopierten Zeitfenstern keine Änderungen vorgenommen werden, wird der Tag/die Kombination der zuvor gewählten Kombination hinzugefügt.

Zeitfenster ändern:

Um ein Zeitfenster zu ändern, folgendermaßen vorgehen:

- 1. Das zu ändernde Zeitfenster auswählen.
- 2. Die gewünschte Änderung vornehmen.
- 3. Um das Zeitfenster zu speichern, den Menüpunkt **Speichern** anwählen und die Sicherheitsabfrage mit **Ja** bestätigen.

Zeitfenster entfernen:

Um ein Zeitfenster zu löschen, folgendermaßen vorgehen:

- 1. Das zu löschende Zeitfenster auswählen.
- 2. Den Menüpunkt Löschen anwählen und die Sicherheitsabfrage mit Ja bestätigen.

Timer zurücksetzen:

Um bereits eingestellte Zeitfenster für einen Tag oder eine Kombination zurückzusetzen, folgendermaßen vorgehen:

1. Den gewünschten Tag/die gewünschte Kombination auswählen.

2. Reset anwählen und die Sicherheitsabfrage mit Ja bestätigen.

Der gewählte Tag/die gewünschte Kombination verschwindet aus der Auflistung, die Zeitfenster sind gelöscht.

Um den gesamten Timer zurückzusetzen, folgendermaßen vorgehen:

→ Reset anwählen und die Sicherheitsabfrage mit Ja bestätigen.

Alle für den Timer vorgenommen	en Einstellungen sind gelöscht.

Ν	Neue Funktion 🛛 😽	
►	Bypass	
	Ext. WT	
	Röhrenkollektor	
_		

Bypass	-
▶ Kollektor	1,2
Ausgang	R4
Тур	Pumpe

Pumpe Bypass 1	-
🕨 🛛 Relais	
Relais	R4
□ PWM/0-10 V	

Solar / Wahlfunktionen 🚽

• Bypass Bereitschaft neue Funktion...

в	ypass	
	ΔTAus	4.0 K
	Funkt.	Aktiviert
Þ	Funktion	speichern

Bypass	*
ΔTAus	4.0 K
Funkt.	Aktiviert
Funktion	löschen

3.5 WAHLFUNKTIONEN EINSTELLEN

In den Menüs **Wahlfunktionen / neue Funktion...** können Wahlfunktionen ausgewählt und eingestellt werden.

Die Anzahl und Art der angebotenen Wahlfunktionen hängt von den bereits gemachten Einstellungen ab.

Wird eine Funktion ausgewählt, öffnet sich ein Untermenü, in dem alle notwendigen Einstellungen vorgenommen werden können.

In diesem Untermenü werden der Funktion ein Ausgang sowie ggf. bestimmte Anlagenkomponenten zugewiesen.

Wenn der Funktion ein Ausgang zugewiesen werden kann, erscheint das Untermenü **Ausgang** (siehe Seite 17).

Wenn Funktionen eingestellt und gespeichert wurden, erscheinen sie im Menü **Wahlfunktio**nen über dem Menüpunkt neue Funktion....

So ist ein schneller Überblick über bereits gespeicherte Funktionen gewährleistet. Ein Überblick, welcher Sensor welcher Komponente und welcher Ausgang welcher Funktion zugewiesen wurde, befindet sich im Menü **Status**.

Am Ende jedes Untermenüs zu einer Wahlfunktion stehen die Punkte **Funkt.** und **Funktion speichern**. Um eine Funktion zu speichern, **Funktion speichern** auswählen und die Sicherheitsabfrage mit **Ja** bestätigen.

In bereits gespeicherten Funktionen erscheint an dieser Stelle die Auswahlmöglichkeit **Funktion löschen**.

Um eine gespeicherte Funktion zu löschen, **Funktion löschen** anwählen und die Sicherheitsabfrage mit **Ja** bestätigen. Die Funktion steht wieder unter **neue Funktion...** zur Verfügung. Die entsprechenden Ausgänge sind wieder freigegeben.

	Funkt.
▶	● Schalter
	OAktiviert
	O Deaktiviert
_	*

Bypass	÷
ΔTAus	4.0 K
Funkt.	Schalter
Sensor	_

Im Einstellkanal **Funkt.** kann eine bereits gespeicherte Wahlfunktion temporär deaktiviert, bzw. wieder aktiviert werden. In diesem Fall bleiben alle Einstellungen erhalten, die zugewiesenen Ausgänge bleiben belegt und können keiner anderen Funktion zugewiesen werden. Die zugewiesenen Sensoren werden weiterhin auf Fehler überwacht.

Mit der Auswahlmöglichkeit **Schalter** kann die Funktion über einen externen potenzialfreien Schalter aktiviert bzw. deaktiviert werden.

Wenn **Schalter** ausgewählt wird, erscheint der Einstellkanal **Sensor**, mit dem ein Sensoreingang als Schalter definiert werden kann.

3.6 UNTERMENÜ AUSGANG

Das Untermenü **Ausgang** ist in fast allen Wahlfunktionen enthalten. Es wird in den einzelnen Funktionsbeschreibungen daher nicht mehr aufgeführt.

In diesem Untermenü können der ausgewählten Funktion Relais- und / oder Signalausgänge zugewiesen werden. Auch alle notwendigen Einstellungen für die Ausgänge können hier vorgenommen werden.

Alle freien Ausgänge im Regler und ggf. angeschlossenen Modulen werden aufgeführt. Wenn - ausgewählt wird, läuft die Funktion softwareseitig normal, schaltet aber keinen Ausgang. Relaisund Signalausgang können separat aktiviert werden. Je nach Einstellung ergeben sich die unten aufgeführten Resultate:

Einstellungen			Ergebnis			
Option Relais	Option PWM/0-10 V	Drehzahlregelung	Option Adapter	Verhalten Relaisausgang	Verhalten Signalausgang	Verhalten Adapter
Ja	Ja	Ja	Ja	➔ Ein/Aus	Modulierend	Modulierend
Ja	Nein	Ja	Nein	 Pulspaketsteuerung 	-	Modulierend
Ja	Nein	Ja	Ja	➔ Ein/Aus	-	Modulierend
Ja	Nein	Nein	irrelevant*	• Ein/Aus	-	0%/100%
Ja	Ja	Ja	Nein	• Ein/Aus	Modulierend	0%/100%
Ja	Ja	Ja	Ja	➔ Ein/Aus	Modulierend	Modulierend
Ja	Ja	Nein	irrelevant*	➔ Ein/Aus	0%/100%	0%/100%
Nein	Ja	Ja	irrelevant*	→	Modulierend	-
Nein	la	Nein	irrelevant*	→ _	0%/100%	-

*Wenn die Option Relais und/oder die Drehzahlregelung deaktiviert ist, ist die Einstellung in der Option Adapter wirkungslos.

Einstellkanal	Bedeutung	Einstellbereich / Auswahl	Werkseinstellung
Relais	Option Relais	Ja, Nein	Nein
Relais	Relaisauswahl	systemabhängig	systemabhängig
PWM/0-10 V	Option PWM/0-10 V	Ja, Nein	Nein
Ausgang	Auswahl Signalausgang	systemabhängig	systemabhängig
Signal	Signalart	PWM, 0-10 V	PWM
Profil	Kennlinie	Solar, Heizung	Solar
Drehzahl	Drehzahlregelung	Ja, Nein	systemabhängig
Min.	Minimaldrehzahl	20100%	30%
Max.	Maximaldrehzahl	20100%	100%
Adapter	Option Adapter	Ja, Nein	Nein
Invertiert	Option invertierte Schaltung	Ja, Nein	Nein
Blockierschutz	Option Blockierschutz	Ja, Nein	Nein
Handbetrieb	Betriebsmodus	Max., Auto, Min., Aus	Auto

Drehzahlregelung

Im Einstellkanal **Drehzahl** kann die Drehzahlregelung für den Ausgang aktiviert, bzw. deaktiviert werden. Wenn **Ja** eingestellt wird, erscheinen die Kanäle **Min., Max.** und **Adapter**.

Im Einstellkanal **Min.** kann für den Ausgang eine relative Minimaldrehzahl für eine angeschlossene Pumpe vorgegeben werden.

Im Einstellkanal **Max.** kann für den Ausgang eine relative Maximaldrehzahl für eine angeschlossene Pumpe vorgegeben werden.

Wenn das Drehzahlregelungssignal über einen Schnittstellenadapter VBus®/PWM erzeugt wird, muss die Option **Adapter** aktiviert werden. Wenn **Ja** eingestellt wird, schaltet das Relais ein bzw. aus (keine Pulspakete). Die Drehzahlinformation wird über den VBus® übertragen. In Funktionen, die ausschließlich nicht-drehzahlgeregelte Verbraucher ansteuern, wird die Drehzahlregelung ausgeblendet (z. B. Bypass-Typ Ventil, Mischer).

Wenn die Temperaturdifferenz die Einschalttemperaturdifferenz erreicht oder überschreitet, wird die Pumpe eingeschaltet und für 10 s mit einer Drehzahl von 100% gefahren. Danach sinkt die Drehzahl auf die Minimaldrehzahl ab. Wird die Solltemperaturdifferenz um 1/10 des Anstiegswertes überschritten, erhöht sich die Drehzahl der Pumpe um eine Stufe (1%). Mit dem Parameter **Anstieg** lässt sich das Regelverhalten anpassen. Jedes Mal, wenn sich die Temperaturdifferenz um 1/10 des einstellbaren Anstiegswertes erhöht, wird die Drehzahl um jeweils eine Stufe angehoben bis zum Maximum von 100%. Wenn die Temperaturdifferenz um 1/10 des einstellbaren Anstiegswertes absinkt, wird die Drehzahl dagegen um eine Stufe reduziert.

Option Relais

Wenn die Option **Relais** aktiviert wird, kann der Ausgangsauswahl ein Relais zugewiesen werden.

Option PWM/0-10 V

Wenn die Option **PWM/0-10 V** aktiviert wird, kann der Ausgangsauswahl ein PWM-/0-10-V-Ausgang zugewiesen werden.

Im Kanal **Signal** kann zwischen einem PWM- und einem 0-10-V-Signal gewählt werden. Unter **Profil** stehen Kennlinien für Solar- und Heizungspumpen zur Auswahl.

Kennlinie Ansteuerung: PWM; Profil: Solar

Kennlinie Ansteuerung: PWM; Profil: Heizung

Blockierschutz

Um das Blockieren von Pumpen bei längerem Stillstand zu verhindern, verfügt der Regler über eine Blockierschutzoption. Diese Option kann im Untermenü Ausgangsauswahl aktiviert werden. Die Einstellungen zur Option **Blockierschutz** können im Menü **Grundeinstellungen/Blockierschutz** (siehe Seite 77) gemacht werden.

Handbetrieb

Im Einstellkanal **Handbetrieb** kann für den Ausgang ein Betriebsmodus gewählt werden. Folgende Einstellmöglichkeiten stehen zur Verfügung:

- Aus=Ausgang ist ausgeschaltet (Handbetrieb)Min.=Ausgang läuft mit Minimaldrehzahl (Handbetrieb)Max.=Ausgang läuft mit 100% (Handbetrieb)
- Auto = Ausgang ist im Automatikmodus

HINWEIS:

Nach Ausführen der Kontroll- und Servicearbeiten muss der Betriebsmodus wieder auf Auto gestellt werden. Im Handbetrieb ist die Regelungslogik außer Kraft gesetzt.

3.7 SENSORKONFIGURATION

Einige Sensoren müssen im Menü **Eingänge/Module** angemeldet und konfiguriert werden (siehe Seite 9 und Seite 82).

In einigen Funktionen steht bei der Sensorauswahl der Kanal **Sensorkonfig**. zur Verfügung, in dem nicht verwendete und nicht angemeldete Sensoren ausgewählt werden können. Der ausgewählte Sensoreingang wird automatisch auf den für die Funktion erforderlichen Sensortyp gestellt. Die Anmeldung im Menü **Eingänge/Module** ist dann nicht mehr erforderlich.

HINWEIS:

Wenn ein Sensor als Temperatursensor einer Funktion zugewiesen wurde, stehen die Sensortypen **Schalter, Fern, BAS, Impuls** und **Keine** für den entsprechenden Eingang nicht mehr zur Verfügung.

Tastenbedienung

Wenn das System hydraulisch befüllt und betriebsbereit ist, die Netzverbindung des Reglers herstellen.

Der Regler durchläuft eine Initialisierungsphase, in der das Tastenkreuz rot leuchtet. Bei Inbetriebnahme oder nach einem Reset des Reglers startet nach der Initialisierungsphase das Inbetriebnahmemenü. Das Inbetriebnahmemenü führt den Benutzer durch die wichtigsten Einstellkanäle für den Betrieb der Anlage.

Inbetriebnahmemenü

Das Inbetriebnahmemenü besteht aus den im Folgenden beschriebenen Kanälen. Um eine Einstellung vorzunehmen, Taste ③ drücken. Den Wert mit den Tasten ④ und D einstellen und mit Taste ④ bestätigen. Im Display erscheint der nächste Kanal.

1. Sprache:

→ Die gewünschte Menüsprache einstellen.

2. Einheiten:

→ Das gewünschte Einheitensystem einstellen.

3. Sommer-/ Winterzeitumstellung:

→ Die automatische Sommer-/ Winterzeitumstellung aktivieren bzw. deaktivieren.

4. Zeit:

→ Die aktuelle Uhrzeit einstellen. Zuerst die Stunden und dann die Minuten einstellen.

5. Datum:

Das aktuelle Datum einstellen. Zuerst das Jahr, dann den Monat und anschließend den Tag einstellen.

6. Auswahl: System oder Schema

➔ Auswählen, ob der Regler mit einer Schemanummer oder mit System und Variante konfiguriert werden soll.

7a. Schema (wenn 6. = Schema):

Die Schemanummer des gewünschten Schemas einstellen.

7b. Solare Systemwahl (wenn 6. = System):

Das gewünschte solare System (Anzahl Kollektoren und Speicher, hydraulische Variante) einstellen.

8. Das Inbetriebnahmemenü beenden:

Nach der Systemauswahl bzw. der Eingabe einer Schemanummer folgt eine Sicherheitsabfrage. Wird sie bestätigt, sind die Einstellungen gespeichert.

- → Um die Sicherheitsabfrage zu bestätigen, Taste 🕥 drücken.
- → Um zu den Einstellkanälen des Inbetriebnahmemenüs zurückzugelangen, Taste 🔿 drücken.

Wenn die Sicherheitsabfrage bestätigt wurde, ist der Regler betriebsbereit.

HINWEIS:

Die im Inbetriebnahmemenü gemachten Einstellungen können nach der Inbetriebnahme jederzeit im entsprechenden Einstellkanal geändert werden. Zusätzliche Funktionen und Optionen können auch aktiviert und eingestellt werden (siehe Seite 33).

Vor Übergabe an den Systembetreiber den Kunden-Bedienercode eingeben (siehe Seite 81).

4.1 GRUNDSYSTEME

Der Regler ist für verschiedene solare Grundsysteme vorprogrammiert. Die Auswahl erfolgt entsprechend der Anzahl der Wärmequellen (Kollektorfelder) und Wärmesenken (Speicher, Schwimmbad).

Die Einstellung des solaren Grundsystems gehört zu den wichtigsten Einstellungen und wird schon im Inbetriebnahmemenü abgefragt.

Es wird zuerst die Anzahl der Kollektorfelder und Speicher abgefragt, dann die hydraulische Variante.

HINWEIS:

Eine Solaranlage mit einem Speicher, der im Schichtladeprinzip sowohl oben als auch unten beladen wird, wird mit der Regelung als 2-Speicher-Anlage realisiert. (Speicher oben = Speicher 1; Speicher unten = Speicher 2).

Das System wird bei der Auswahl anhand der Anzahl an Kollektorfeldern und Speichern visualisiert. Das Beispielbild zeigt das System 2.3.x mit 2 Kollektorfeldern und 3 Speichern.

Die hydraulische Variante bezieht sich auf die unterschiedlichen Stellglieder, die angesteuert werden sollen. Sie werden symbolisch im Display visualisiert, wenn die Variante ausgewählt wird. Das obere Symbol zeigt die zu den Kollektorfeldern gehörigen Stellglieder, das untere die zu den Speichern gehörigen.

Die beispielhafte Abbildung zeigt das Auswahlbild für System 2.3.2.

Hier verfügt jedes der Kollektorfelder über ein 2-Wege-Ventil, die Speicher werden über eine Pumpenlogik angesteuert.

Für jedes Grundsystem weist der Regler entsprechende Ausgangs- und Sensorbelegungen zu. Die Zuweisungen sämtlicher Kombinationen sind in Kap. 4.2 dargestellt.

4.2 ÜBERSICHT ÜBER DIE AUSGANGSBELEGUNGEN/SENSORBELEGUNGEN

System 1.1.1

-				
Sensoren		Relais; PWM/0-10 V		
Kollektor 1	S1	Solarpumpe	R1; A	
Speicher unten	S2			

System 1.2.1

Sensoren		Relais; PWM/0-1	0 V
Kollektor	S1	Solarpumpe	R1; A
Speicher 1 unten	S2	3-WV Speicher 2	R2
Speicher 2 unten	S4		

System 1.2.2

Sensoren		Relais; PWM/0-10 V	
Kollektor	S1	Solarpumpe Speicher 1	R1; A
Speicher 1 unten	S2	Solarpumpe Speicher 2	R2; B
Speicher 2 unten	S4		

System 1.2.3

Sensoren		Relais; PWM/0-10 V	
Kollektor	S1	Solarpumpe	R1; A
Speicher 1 unten	S2	2-WV Speicher 1	R2
Speicher 2 unten	S4	2-WV Speicher 2	R3

System	1.3.1
--------	-------

Sensoren		Relais; PWM/0-1	0 V
Kollektor 1	S1	Solarpumpe	R1; A
Speicher 1 unten	S2	2-WV Speicher 1	R2
Speicher 2 unten	S4	2-WV Speicher 2	R3
Speicher 3 unten	S5	2-WV Speicher 3	R4

1-3-2 🖉	
S1	
	5
R1: A R2: B R3: C	

System

System 1.3.2				
Sensoren		Relais; PWM/0-10 V		
Kollektor 1	S1	Solarpumpe Speicher 1	R1; A	
Speicher 1 unten	S2	Solarpumpe Speicher 2	R2; B	
Speicher 2 unten	S4	Solarpumpe Speicher 3	R3; C	
Speicher 3 unten	S5			

System 1.3.3

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Solarpumpe	R1; A
Speicher 1 unten	S2	3-WV Speicher 1	R2
Speicher 2 unten	S4	3-WV Speicher 2	R3
Speicher 3 unten	S5		

System	141
System	1.44.1

Sensoren	Relais; PWM/0-10 V	
Collektor 1 S1	Solarpumpe R1; A	
peicher 1 unten S2	2-WV Speicher 1 R2	
peicher 2 unten S4	2-WV Speicher 2 R3	
peicher 3 unten S5	2-WV Speicher 3 R4	
peicher 4 unten S6	2-WV Speicher 4 R5	

R3

R2

R4

System 1.4.2

S6

R5

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Solarpumpe	R1; A
Speicher 1 unten	S2	3-WV Speicher 1	R2
Speicher 2 unten	S4	3-WV Speicher 2	R3
Speicher 3 unten	S5	3-WV Speicher 3	R4
Speicher 4 unten	S6		

System 1.4.3

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Solarpumpe Speicher 1	R1; A
Speicher 1 unten	S2	Solarpumpe Speicher 2	R2; B
Speicher 2 unten	S4	Solarpumpe Speicher 3	R3; C
Speicher 3 unten	S5	Solarpumpe Speicher 4	R4; D
Speicher 4 unten	S6		

Relais; PWM/0-10 V Pumpe Kollektor 1 R

Pumpe Kollektor 2

R1; A

R2; B

System	
2-1-1	

System	
2-1-2 × ×	

System	2.1.2	
--------	-------	--

System 2.1.1 Sensoren

Kollektor 1

Kollektor 2

Speicher unten

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher unten	S2	2-WV Kollektor 2	R2
Kollektor 2	S6	Solarpumpe	R3; A

S1

S6

S2

System 2.2.1

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	3-WV Speicher 2	R3
Kollektor 2	S6		

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	2-WV Speicher 1	R3
Kollektor 2	S6	2-WV Speicher 2	R4

System 2.2.3

-			
Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher 1 unten	S2	2-WV Kollektor 2	R2
Speicher 2 unten	S4	Solarpumpe Sp1	R3; A
Kollektor 2	S6	Solarpumpe Sp2	R4; B

System 2.2.4

Sensoren

Kollektor 1

Kollektor 2

Speicher 1 unten

Speicher 2 unten

System 2.3.1

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	2-WV Speicher 1	R3
Speicher 3 unten	S5	2-WV Speicher 2	R4
Kollektor 2	S6	2-WV Speicher 3	R5

System 2.2.5

Sensoren		Relais; PWM/0-1	0 V
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher 1 unten	S2	2-WV Kollektor 2	R2
Speicher 2 unten	S4	Solarpumpe	R3; A
Kollektor 2	S6	2-WV Speicher 1	R4
		2-WV Speicher 2	R5

S1

Relais; PWM/0-10 V

R1

R2

R4

R3; A

2-WV Kollektor 1

S2 2-WV Kollektor 2

S6 3-WV Speicher 2

S4 Solarpumpe

System 2.3.2

System 2.3.3

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Solarpumpe Speicher 1	R1; A
Speicher 1 unten	S2	Solarpumpe Speicher 2	R2; B
Speicher 2 unten	S4	Solarpumpe Speicher 3	R3; C
Speicher 3 unten	S5	2-WV Kollektor 1	R4
Kollektor 2	S6	2-WV Kollektor 2	R5

Sensoren		Relais; PWM/0-1	0 V
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher 1 unten	S2	2-WV Kollektor 2	R2
Speicher 2 unten	S4	Solarpumpe	R3; A
Speicher 3 unten	S5	2-WV Speicher 1	R4
Kollektor 2	S6	2-WV Speicher 2	R5
		2-WV Speicher 3	R6

System 2.3.4

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	3-WV Speicher 1	R3
Speicher 3 unten	S5	3-WV Speicher 2	R4
Kollektor 2	S6		

System 2.3.5

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher 1 unten	S2	2-WV Kollektor 2	R2
Speicher 2 unten	S4	Solarpumpe	R3; A
Speicher 3 unten	S5	3-WV Speicher 1	R4
Kollektor 2	S6	3-WV Speicher 2	R5

System 3.1.1			
Sensoren		Relais; PWM/0-10	V
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher unten	S2	Pumpe Kollektor 2	R2; B
Kollektor 2	S6	Pumpe Kollektor 3	R3; C
Kollektor 3	S8		

System 3.1.2			
Sensoren		Relais; PWM/0-1	0 V
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher unten	S2	2-WV Kollektor 2	R2
Kollektor 2	S6	Solarpumpe	R3; A
Kollektor 3	S8	2-WV Kollektor 3	R4

System 3.2.1

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	3-WV Speicher 2	R3
Kollektor 2	S6	Pumpe Kollektor 3	R4; C
Kollektor 3	S8		

•	UU.	Δ
S1	S6 S8	
<u>^</u>	-2 - 2	
		<
	` (R5; C
R2: B		T
112,0	$ \ \ $	\square

R3; A

System 3.2.3

S4

R4; B

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	2-WV Kollektor 1	R1
Speicher 1 unten	S2	2-WV Kollektor 2	R2
Speicher 2 unten	S4	Solarpumpe Speicher 1	R3; A
Kollektor 2	S6	Solarpumpe Speicher 2	R4; B
Kollektor 3	S8	2-WV Kollektor 3	R5

System 3.2.2

Sensoren		Relais; PWM/0-10 V	
Kollektor 1	S1	Pumpe Kollektor 1	R1; A
Speicher 1 unten	S2	Pumpe Kollektor 2	R2; B
Speicher 2 unten	S4	2-WV Speicher 1	R3
Kollektor 2	S6	2-WV Speicher 2	R4
Kollektor 3	S8	Pumpe Kollektor 3	R5; C

System 3.2.4

Sensoren	Relais; PWM/0	Relais; PWM/0-10 V		
Kollektor 1 S1	2-WV Kollektor 1	R1		
Speicher 1 unten S2	2-WV Kollektor 2	R2		
Speicher 2 unten S4	Solarpumpe	R3; A		
Kollektor 2 S6	3-WV Speicher 2	R4		
Kollektor 3 S8	2-WV Kollektor 3	R5		

5. HAUPTMENÜ

Hauptmenü

▶ Status Solar

Anlage

Folgende Menübereiche stehen zur Auswahl:

- Status
- Solar
- Anlage
- Heizung
- WMZ
- Grundeinstellungen
- SD-Karte
- Handbetrieb
- Bedienercode
- Eingänge/Module
- 1. Menübereich mit den Tasten 🕦 und 🗊 auswählen.
- 2. Taste 💿 drücken, um in den ausgewählten Menübereich zu gelangen.

HINWEIS:

Wenn für 1 min keine Taste gedrückt wird, erlischt die Displaybeleuchtung. Nach weiteren 4 min wechselt der Regler in den Home Screen (siehe Seite 35).

→ Um vom Statusmenü in das Hauptmenü zu gelangen, Taste 🕡 drücken.

5.1 MENÜSTRUKTUR

Hauptmenü

Status			
Solar	- Solar		
Anlage	Grundeinstellung –	Grundeinstellung	
Heizung	Wahlfunktionen	System	
WMZ	Funktionskontrolle	Kollektor	
Grundeinstellungen		Speicher	
SD-Karte		Ladelogik	
Handbetrieb	Anlage		
Bedienercode	Wahlfunktionen –	Wahlfunktionen	
Eingänge/Module		Parallelrelais -	– Parallelrelais
-	- Heizung	Mischer	Ausgang
	Gemeinsame Relais	Zonenladung	Bezugsrelais
	Heizkreise	Fehlerrelais	Nachlauf
			Verzögerung
	Estrich-Trocknung		
	- Grundeinstellungen		
	Sprache		
	Sommer/Winter		
	Datum		
	Uhrzeit		
	TempEinheit		
	VolEinh.		
	Eingänge/Module		
	Module		
	Fingänge		

HINWEIS:

Die zur Verfügung stehenden Menüpunkte und Einstellwerte sind variabel und abhängig von bereits gemachten Einstellungen. Die Abbildung zeigt nur einen beispielhaften Ausschnitt des Gesamtmenüs zur Verdeutlichung der Menüstruktur.

6. STATUS

Bypass	Ŧ	
Pumpe	Aus	
Bypass	96 °C	
🕨 Einstellwerte	>>	

Im Statusmenü des Reglers befinden sich zu jedem Menübereich die jeweiligen Statusmeldungen.

Mit den Tasten 💿 und 🕢 kann durch die Statusmenüs geblättert werden.

Am Ende jedes Untermenüs befindet sich der Menüpunkt Einstellwerte.

Wenn dieser angewählt wird, öffnet sich das entsprechende Menü.

→ Um zurück ins Statusmenü zu gelangen, Taste 🕡 drücken.

6.1 MESS-/BILANZWERTE

Im Menü **Status / Mess-/Bilanzwerte** werden alle aktuellen Messwerte sowie verschiedene Bilanzwerte angezeigt. Einige der Anzeigezeilen können angewählt werden, um in ein Untermenü zu gelangen.

6.2 SOLAR

Im Menü **Status/Solar** werden die Statusinformationen für das solare System und alle aktivierten solaren Wahlfunktionen angezeigt.

6.3 ANLAGE

Im Menü **Status / Anlage** werden die Statusinformationen für alle aktivierten Anlagen-Wahlfunktionen angezeigt.

6.4 HEIZUNG

Im Menü **Status / Heizung** wird der Status der aktivierten Anforderungen und Heizkreise sowie der ausgewählten Wahlfunktionen angezeigt.

6.5 WMZ

Im Menü **Status/WMZ** werden die aktuellen Messwerte der Vor- und Rücklaufsensoren, Volumenstrom und Leistung sowie die Wärmemengen angezeigt.

Zudem werden die Werte des Impulszählers angezeigt.

6.6 MELDUNGEN

Im Menü Status/Meldungen werden Fehler- und Warnmeldungen angezeigt.

Im Normalbetrieb wird **Alles in Ordnung** angezeigt.

Wenn eine Überwachungsfunktion der Funktionskontrolle aktiviert ist und einen Fehler detektiert, wird eine entsprechende Meldung angezeigt (siehe Tabelle Seite 35).

Bei einer Meldung zeigt das Display die Überwachungsfunktion, einen vierstelligen Fehlercode sowie einen Kurztext zur Art des Fehlers an.

Um eine Fehlermeldung zu quittieren, folgendermaßen vorgehen:

- 1. Die Zeile mit dem Code der gewünschten Fehlermeldung mit den Tasten 🕥 und 🗊 auswählen.
- 2. Die Meldung mit Taste (5) quittieren.
- 3. Die Sicherheitsabfrage mit Ja bestätigen.

Wenn der Installateur-Bedienercode eingegeben wurde, erscheint unter den Fehlermeldungen die Zeile **Neustarts**. Die Ziffer gibt an, wie oft der Regler seit Inbetriebnahme neu gestartet wurde. Dieser Wert kann nicht zurückgesetzt werden.

Status: Meldu	-
Alles in Ordnu	ing
Neustarts	З
Version	1.00

6. STATUS

Fehlercode	Anzeige	Überwachungsfunktion	Ursache
0001	!Sensorfehler	Sensorbruch	Sensorleitung unterbrochen
0002	!Sensorfehler	Sensorkurzschluss	Sensorleitung kurzgeschlos- sen
0011	!∆T zu hoch	ΔT zu hoch	Kollektor 50K > als zu bela- dener Sp.
0021	!Nachtzirkulation	Nachtzirkulation	Zw. 23:00 und 05:00 Kol. > 40°C
0031	!VL/RL vertauscht	VL/RL vertauscht	Kol.temp. steigt nach dem Einschalten nicht an
0041	!Vol.str.überw.	Volumenstromüberwa- chung	Kein Durchfluss am Sensor
0051	!Überdruck	Überdrucküberwachung	Max. Anlagendruck über- schritten
0052	!Minderdruck	Minderdrucküberwachung	Min. Anlagendruck unter- schritten
0061	!Datenspeicher def.	Speicherung sowie Ein- stellungsänderungen nicht möglich	
0071	!Uhrenmodul def.	Zeitabhängige Funktionen (z. B. Nachtabsenkung) nicht möglich	
0081	!Speichermax- temp.	Speichermaximaltempe- ratur	Sp. max. wurde überschritten
0091	Neustarts	Neustart-Zähler (nicht einstellbar)	Anzahl der Neustarts seit Inbetriebnahme

Der Fehler !VL/RL vertauscht kann nur korrekt detektiert und gemeldet werden, wenn der Kollektorsensor die Temperatur am Kollektoraustritt direkt im Medium misst. Wenn der Kollektorsensor nicht richtig positioniert ist, kann es zu Falschmeldungen kommen.

→ Den Kollektorsensor am Kollektoraustritt direkt im Medium positionieren oder die Funktionskontrolle VL/RL vertauscht deaktivieren.

6.7 HOME SCREEN

Im Menüpunkt Home Screen kann ausgewählt werden, welches Menü der Regler anzeigt, wenn längere Zeit keine Taste gedrückt wird.

7. SOLAR

System

In diesem Menü können alle Einstellungen für den Solarteil der Anlage gemacht werden. Das Menü Solar besteht aus den folgenden Untermenüs:

- Grundeinstellung
- Wahlfunktionen
- Funktionskontrolle
- Urlaubsfunktion
- Experte

GRUNDEINSTELLUNG 71

In diesem Menü können alle Grundeinstellungen für den Solarteil der Anlage gemacht werden. In diesem Menü kann das hydraulische System, das der Anlage zu Grunde liegt, eingestellt werden. Die Einstellung ist nach Anzahl der Kollektorfelder und Speicher sowie hydraulischer Variante gegliedert.

Die Anzahl der Kollektorfelder und Speicher sowie die hydraulische Variante sind im Regelfall schon im Inbetriebnahmemenü eingestellt worden (siehe Seite 22).

HINWEIS:

Wenn die Einstellung nachträglich geändert wird, werden alle Einstellungen für den Solarteil auf die Werkseinstellung zurückgesetzt.

Wird durch die Veränderung auch ein Relais oder ein PWM-/0-10-V-Ausgang für das neue Solarsystem benötigt, das zuvor dem Anlagen- oder Heizungsteil zugewiesen wurde, wird das Relais/der PWM-/0-10-V-Ausgang aus der nicht-solaren Funktion entfernt.

Der Regler unterstützt bis zu 3 Kollektorfelder und bis zu 4 Solarspeicher (bei 2 oder 3 Kollektorfeldern nur bis zu 3 bzw. 2 Solarspeicher).

Die weiteren Menüpunkte in Solar/Grundeinstellung passen sich dem ausgewählten System an.

Kollektor (1/2/3)

Solar/Grundeinstellung/Kollektor (1/2/3)

Einstellkanal	Bedeutung	Einstellbereich/ Auswahl	Werkseinstellung
Kollmin.	Kollektorminimalbegrenzung	Ja, Nein	Ja
Kollmin.	Kollektorminimaltemperatur	1090°C	10°C
Kollnot.	Kollektornottemperatur	80200°C	130°C

Bei Systemen mit 2 oder 3 Kollektorfeldern werden statt des Menüpunktes Kollektor bis zu 3 getrennte Menüpunkte (Kollektor 1 bis Kollektor 3) angezeigt.

Für jedes Kollektorfeld kann eine Kollektorminimalbegrenzung und eine Kollektornottemperatur eingestellt werden.

Kollektorminimalbegrenzung

Wenn die Kollektorminimalbegrenzung aktiviert ist, schaltet der Regler die entsprechende Pumpe nur ein, wenn die einstellbare Kollektorminimaltemperatur überschritten ist. Für diese Funktion ist eine Hysterese von 2 K festgelegt.

HINWEIS:

Wenn die Speicherkühlung oder die Frostschutzfunktion aktiv ist, wird die Kollektorminimalbegrenzung außer Kraft gesetzt. In diesem Fall kann die Kollektortemperatur unter die Minimaltemperatur fallen.

Kollmin.

Kollnot.

10 °C

130 °C
Speicher	Ŧ
▶ ΔTEin	5.0 K
ΔTAus	3.0 K
ΔTSoll	6.0 K

Kollektornotabschaltung

Wenn die Kollektortemperatur die eingestellte Kollektornottemperatur überschreitet, schaltet die entsprechende Pumpe aus, um einer schädigenden Überhitzung der Solarkomponenten vorzubeugen. Eine Hysterese von 10 K ist für die Kollektornottemperatur festgelegt.

Speicher (1/2/3/4)

Solar/Grundeinstellung/Speicher (1/2/3/4)

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
ΔTEin	Einschalttemperaturdifferenz	1,020,0K	5,0K
ΔTAus	Ausschalttemperaturdifferenz	0,519,5K	3,0K
ΔTSOII	Solltemperaturdifferenz	1,530,0K	6,0K
Spsoll	Speichersolltemperatur	495°C	45 °C
Spmax	Speichermaximaltemperatur	495°C	60 °C
Vorrang	Speicher-Vorrang	14	systemabhängig
HysSp	Hysterese Speichersoll- und	0,110,0K	2,0K
	Maximaltemperatur		
Anstieg	Anstiegswert	1,020,0K	1,0K
tMin	Mindestlaufzeit	0300 s	30 s
Min. Drehz.	Minimaldrehzahl	20100%	30 %
Speicher	Sperrung für solare Beladung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Bei Systemen mit 2 oder mehr Speichern werden statt des Menüpunktes **Speicher** getrennte Menüpunkte für jeden der Speicher (**Speicher 1** bis **Speicher 4**) angezeigt.

Für jeden Speicher kann eine eigene ∆T-Regelung, eine Soll- und eine Maximaltemperatur, der Vorrang (bei Mehrspeichersystemen), eine Hysterese, ein Anstieg, eine Mindestlaufzeit und die Minimaldrehzahl eingestellt werden.

Die ∆T-Regelung verhält sich wie eine Standard-Differenzregelung. Wenn die Temperaturdifferenz die Einschalttemperaturdifferenz erreicht oder überschreitet, wird die entsprechende Pumpe eingeschaltet. Wenn die Temperaturdifferenz die eingestellte Ausschalttemperaturdifferenz erreicht oder unterschreitet, schaltet der entsprechende Ausgang aus.

HINWEIS:

Die Einschalttemperaturdifferenz muss mindestens 0,5 K höher sein als die Ausschalttemperaturdifferenz.

Bei Mehrspeichersystemen und unterschiedlicher Speichersoll-/Speichermaximaltemperatur werden alle Speicher zunächst auf Speichersolltemperatur, danach auf Speichermaximaltemperatur beladen (gemäß ihrer Priorität und unter Berücksichtigung der Pendelladelogik). Falls einer der Speicher seine Speichersolltemperatur nicht erreicht, weil z. B. die erforderliche Temperaturdifferenz nicht gegeben ist, wird der in der Priorität nächste Speicher über seine Solltemperatur hinaus auf die Speichermaximaltemperatur beladen, wenn die Einschaltbedingung erfüllt ist (gilt nicht für die sukzessive Ladung).

Die Speichernummer bezieht sich auf den Speichersensor, nicht auf die Priorität. Im Einstellkanal **Vorrang** wird die jeweilige Speichernummer als Werkseinstellung vorgeschlagen, kann aber beliebig verändert werden.

Wenn für Speicher der gleiche Wert eingestellt wird, werden die Speicher parallel beladen. Die Speichernummern werden den Sensoren wie folgt zugeordnet:

1

Speicher 2 = Sensor S4

Speicher 3 = Sensor S5

Speicher 4 = Sensor S6 oder S7

Jede Speicherbeladung bleibt für die Mindestlaufzeit aktiv, unabhängig von der Ausschaltbedingung.

Um Anlagenschäden zu vermeiden, ist der Regler mit einer internen Speichernotabschaltung ausgestattet, die das gesamte solare System deaktiviert, sobald einer der Speicher eine Temperatur von 95 °C [200 °F] erreicht.

Ladelogik			-
▶Тур F	Pende	ellac	lung
Pend	elp.	2	min
Umw	älzz.	15	min

Ladelogik	
Solar/Grundeinstellung/Ladelog	jik

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstel- lung
Тур	Ladelogik-Typ	Pendelladung/Sukz. Ladung	Pendelladung
Pendelp.	Pendelpause	15 min	2 min
Umwälzz.	Umwälzzeit	160 min	15 min
Pausendrehzahl	Option Pausendrehzahl	Ja, Nein	Nein
Drehzahl	Pendelpausendrehzahl	20100%	30%
Spreizladung	Option Spreizladung	Ja, Nein	Nein
ΔΤ	Temperaturdifferenz Spreizladung	2090K	40 K
Pumpenverzög.	Pumpenverzögerung	Ja, Nein	Nein
Verzög.	Verzögerungszeit	5600 s	15 s

Bei Systemen mit 2 oder mehr Speichern können in diesem Menü Einstellungen zur Ladelogik gemacht werden.

In Systemen mit 1 Speicher wird nur der Menüpunkt **Pumpenverzög**. angeboten. Jede Speicherbeladung bleibt für die Mindestlaufzeit (**Solar/Grundeinstellung/Speicher**) aktiv, unabhängig von der Ausschaltbedingung.

Typ Pendelladelogik

Wenn der Vorrangspeicher nicht beladen werden kann, wird der in der Reihenfolge der Prioritäten nächste Nachrangspeicher geprüft. Ist eine Beladung dieses Nachrangspeichers möglich, wird er für die Umwälzzeit beladen. Nach Ablauf der Umwälzzeit wird die Beladung gestoppt und der Regler beobachtet die Kollektortemperatur für die Pendelpausenzeit. Steigt die Kollektortemperatur um 2K an, startet eine neue Pendelpause, um eine weitere Erwärmung des Kollektors zu ermöglichen. Steigt die Kollektortemperatur nicht ausreichend an, wird der Nachrangspeicher erneut für die Dauer der Umwälzzeit beladen.

Sobald die Einschaltbedingungen des Vorrangspeichers erfüllt sind, wird dieser beladen. Sind die Einschaltbedingungen des Vorrangspeichers nicht erfüllt, wird die Beladung des Nachrangspeichers fortgesetzt. Wenn der Vorrangspeicher seine Maximaltemperatur erreicht, wird keine Pendelladung mehr ausgeführt.

Typ Sukzessive Ladung

Bei der sukzessiven Beladung wird der vorrangig eingestellte Speicher bis zur Solltemperatur beladen. Wenn diese erreicht wird, beginnt die Beladung des nächsten freien Speichers. Wenn der Vorrangspeicher wieder unter die Solltemperatur fällt, wird die Beladung des nächsten freien Speichers wieder unterbrochen, unabhängig davon, ob eine Einschaltbedingung zum Vorrangspeicher oder Nachrangspeicher erfüllt ist oder nicht.

Wenn alle Speicher auf ihre Solltemperaturen beladen wurden, folgt derselbe Vorgang bis auf die jeweiligen Maximaltemperaturen.

Option Spreizladung

In Mehrspeichersystemen ohne 3-Wege-Ventile kann eine Spreizfunktion aktiviert werden: Sobald die einstellbare Temperaturdifferenz zwischen Kollektor und Vorrangspeicher überschritten ist, wird der nächste Speicher parallel beladen, sofern er nicht gesperrt ist. Wenn die Temperaturdifferenz um 2 K unterschritten wird, schaltet die Pumpe wieder ab.

Solar/Relais	•
🕨 Primärpump)e
	R1;A >>
2-WV Sp. 1	

Relais Solar/Grundeinstellung/Relais

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Relais	Relaisanzeige	systemabhängig	systemabhängig
PWM/0-10 V	Option PWM/0-10 V	Ja, Nein	Nein
Ausgang	Auswahl Signalaus-	systemabhängig	systemabhängig
	gang		
Signal	Signalart	PWM, 0-10 V	PWM
Profil	Kennlinie	Solar, Heizung	Solar
Drehzahl	Drehzahlregelung	Ja, Nein	systemabhängig
Min.	Minimaldrehzahl	20100%	20%
Max.	Maximaldrehzahl	20100%	100%
Adapter	Option Adapter	Ja, Nein	Nein
Invertiert	Option invertierte Schaltung	Ja, Nein	Nein
Blockierschutz	Option Blockier- schutz	Ja, Nein	Nein
Handbetrieb	Betriebsmodus	Max., Auto, Min., Aus	Auto

In diesem Untermenü wird für die Ausgänge des gewählten Systems angezeigt, welcher Komponente sie zugewiesen sind. Auch alle notwendigen Einstellungen für die Ausgänge können hier vorgenommen werden.

7.2 WAHLFUNKTIONEN

In diesem Menü können Zusatzfunktionen für den Solarteil der Anlage ausgewählt und eingestellt werden.

Die Anzahl und Art der angebotenen Wahlfunktionen hängt von den bereits gemachten Einstellungen ab.

Für Informationen zur Einstellung von Wahlfunktionen siehe Seite 16

Beispielschemata für die verschiedenen Bypass-Varianten

Solar/Wahlfunktionen/neue Funktion.../Bypass

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Kollektor	Kollektorfeld	systemabhängig	systemabhängig
Ausgang	Bypassausgang	systemabhängig	systemabhängig
Тур	Variante (Pumpen- oder Ventillo- gik)	Pumpe, Ventil	Pumpe
Invertiert	Ventillogik-Invertierung	Ja, Nein	Nein
Sensor	Bypasssensor	systemabhängig	systemabhängig
∆TEin	Bypass-Einschalttemperaturdif- ferenz	1,020,0K	3,0 K
ΔTAus	Bypass-Ausschalttemperaturdif- ferenz	0,519,5K	2,0 K
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Neue Funktion		
Þ	Bypass	
	Ext. WT	
	Röhrenkollektor	

Bypass	
🕨 Kollektor	1
Ausgang	R3
Тур	Pumpe

Ext. WT	-
🕨 Ausgang	R4
Speicher	1,2
Sensor WT	S4

Diese Funktion dient dazu, einen Wärmeverlust direkt nach dem Einschalten des Solarkreises zu verhindern. Das in den Rohrleitungen befindliche, noch kalte Wärmeträgermedium wird über einen Bypass am Speicher vorbeigeleitet. Die Beladung wird erst begonnen, wenn das Medium ausreichend erwärmt ist.

Im Menüpunkt **Typ** kann ausgewählt werden, ob der Bypass mit einer zusätzlichen Pumpe oder einem Ventil geschaltet wird. Je nach Variante arbeitet die Regellogik unterschiedlich:

Typ Pumpe

Bei dieser Variante ist eine Bypasspumpe der Solarpumpe vorgelagert.

Bei einer möglichen Speicherbeladung wird zunächst die Bypasspumpe in Betrieb genommen. Wenn die Temperaturdifferenz zwischen Bypasssensor und Speichersensor die Einschalttemperaturdifferenz erreicht, wird die Bypasspumpe abgeschaltet und die Solarpumpe eingeschaltet.

Typ Ventil

Bei dieser Variante befindet sich ein Bypassventil im Solarkreis.

Bei einer möglichen Speicherbeladung bleibt das Ventil zunächst so geschaltet, dass der Bypass aktiv ist. Wenn die Temperaturdifferenz zwischen Bypasssensor und Speichersensor die Einschalttemperaturdifferenz erreicht, schaltet das Bypassrelais das Ventil um und die solare Beladung beginnt.

Wenn die Variante Ventil ausgewählt ist, steht zusätzlich die Option **Invertiert** zur Verfügung. Wenn die Option **Invertiert** aktiviert ist und der Bypasskreislauf aktiviert wird, schaltet das Relais ein. Wenn die Temperaturdifferenz zwischen Bypasssensor und Speichersensor die Einschalttemperaturdifferenz erreicht, schaltet das Relais wieder aus.

Externer Wärmetauscher

Solar/Wahlfunktionen/neue Funktion.../Ext. WT

Einstellkanal	Bedeutung	Einstellbereich/ Auswahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Speicher	Speicherauswahl	systemabhängig	alle Speicher
Sensor WT	Bezugssensor externer Wär- metauscher	systemabhängig	systemabhängig
Zieltemperatur	Option Zieltemperatur	Ja, Nein	Nein
Sensor	Bezugssensor Zieltemperatur	systemabhängig	systemabhängig
Zieltemp.	Zieltemperatur	1595°C	60 °C
ΔTEin	Einschalttemperaturdifferenz	1,020,0K	5,0K
ΔTAus	Ausschalttemperaturdiffe-	0,519,5K	3,0К
Nachlauf	Nachlaufzeit	0 15 min	2 min

Diese Funktion dient dazu, Ladekreise miteinander zu koppeln, die durch einen gemeinsamen Wärmetauscher voneinander getrennt sind.

Der zugewiesene Ausgang wird eingeschaltet, wenn einer der eingestellten Speicher solar beladen wird und eine Temperaturdifferenz zwischen dem Sensor des betreffenden Speichers und dem Bezugssensor externer Wärmetauscher besteht.

Es können beliebig viele Speicher des solaren Anlagenteils ausgewählt werden.

Der Ausgang schaltet ab, wenn diese Temperaturdifferenz unter die eingestellte Ausschaltdifferenz absinkt.

In den Systemen, in denen die Speicher eigene Ladepumpen haben, steuert das Wärmetauscherrelais die Primärkreis-Pumpe.

Wird die Option **Zieltemp.** ausgewählt, verändert sich die Arbeitsweise der Drehzahlregelung. Der Regler behält die Minimaldrehzahl bei, bis die Temperatur am zugewiesenen Sensor die eingestellte Zieltemperatur überschritten hat.

Wenn am Bezugssensor Zieltemperatur die Zieltemperatur um 5K überschritten wird, wird die Drehzahl der Primärpumpe um 10% erhöht. Bei einer erneuten Erhöhung um 5K wird die Drehzahl der Sekundärpumpe angeglichen. Jede weitere Erhöhung um 5K führt erneut zu einer abwechselnden Drehzahlanpassung der Primär- und Sekundärpumpe(n). Sinkt die Temperatur, findet dieselbe Anpassung nach unten statt.

HINWEIS:

Der Wärmetauscher ist durch eine fest eingestellte Frostschutzfunktion geschützt. Dennoch wird die Verwendung eines Bypasses empfohlen.

Der Wärmetauscher ist durch eine fest eingestellte Frostschutzfunktion geschützt. Wenn die Frostschutztemperatur (10°C) am Wärmetauscher-Sensor unterschritten wird, schaltet der Regler die Sekundärpumpe mit 100% Drehzahl ein. Die Frostschutzfunktion nutzt die Wärme aus dem Speicher mit der jeweils höchsten Temperatur. Wenn alle Speicher 10°C erreicht haben, wird die Sekundärpumpe ausgeschaltet. Wenn die Temperatur am Bezugssensor die Frostschutztemperatur um 2K überschreitet, wird die Sekundärpumpe ausgeschaltet. Die Frostschutzfunktion des Wärmetauschers arbeitet unabhängig davon, ob eine solare Beladung stattfindet.

In Systemen mit 2 oder 3 Kollektorfeldern arbeitet die Option Zieltemperatur aus hydraulischen Gründen nicht einwandfrei.

Röhrenkollektorfunktion

Solar/Wahlfunktionen/neue Funktion.../Röhrenkollektor

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstel- lung
Anfang	Anfang Zeitfenster	00:0023:00	08:00
Ende	Ende Zeitfenster	00:3023:30	19:00
Lauf	Pumpenlaufzeit	5600 s	30 s
Pause	Stillstand-Intervall	160 min	30 min
Kollektor	Kollektorfeld	systemabhängig	systemabhängig
Spmax aus	Einschaltunterdrückung	Ja, Nein	Ja
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert,	Aktiviert
		Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient zur Verbesserung des Einschaltverhaltens bei Systemen mit messtechnisch ungünstig positionierten Kollektorsensoren (z. B. bei einigen Röhrenkollektoren).

Die Funktion wird innerhalb eines einstellbaren Zeitfensters aktiv. Sie schaltet die Kollektorkreispumpe für die einstellbare Laufzeit zwischen den einstellbaren Stillstand-Intervallen ein, um die verzögerte Temperaturerfassung auszugleichen.

Wenn die Laufzeit mehr als 10 s beträgt, wird die Pumpe für die ersten 10 s der Laufzeit mit 100% gefahren. Für die restliche Laufzeit wird die Pumpe mit der eingestellten Minimaldrehzahl gefahren.

Ist der Kollektorsensor defekt oder der Kollektor gesperrt, wird die Funktion unterdrückt bzw. abgeschaltet.

Die Röhrenkollektorfunktion wird unterdrückt, wenn die Option **Spmax aus** aktiviert ist und alle Speicher ihre jeweilige Maximaltemperatur überschritten haben.

2- und 3-Kollektor-Systeme

Bei Systemen mit 2 oder 3 Kollektorfeldern wird die Röhrenkollektorfunktion mehrfach angeboten.

Während der solaren Beladung eines Kollektorfeldes ist die Röhrenkollektorfunktion für dieses Kollektorfeld inaktiv.

Röhrenkollektor	+
🕨 Anfang	08:00
Ende	19:00
Lauf	30 s
-	

Zieltemperatur	Ŧ
🕨 Zieltemp.	65 °C
Sensor	S4
Anstieg	2.0 K

Zieltemperatur Solar/Wahlfunktionen/neue Funktion.../Zieltemperatur

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Zieltemp.	Zieltemperatur	20110°C	65°C
Sensor	Bezugssensor	systemabhängig	systemabhängig
Anstieg	Anstiegswert	1,020,0K	1,0K
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Wird diese Funktion ausgewählt, verändert sich die Arbeitsweise der Drehzahlregelung. Der Regler behält die Minimaldrehzahl bei, bis die Temperatur am zugewiesenen Sensor die eingestellte Zieltemperatur überschritten hat. Erst dann setzt die Standard-Drehzahlregelung ein. Verändert sich die Temperatur am zugewiesenen Sensor um 1/10 des einstellbaren Anstiegswertes, wird die Pumpendrehzahl entsprechend angepasst.

Wenn zusätzlich die Funktion **Ext. WT** mit der Option **Zieltemp**. (siehe Seite 40) aktiviert ist, setzt die Zieltemperaturregelung aus, während der externe Wärmetauscher beladen wird. Während der externe Wärmetauscher beladen wird, greift die Drehzahlregelung des externen Wärmetauschers.

Frostschutz

Solar/Wahlfunktionen/neue Funktion.../Frostschutz

Einstellkanal	Bedeutung	Einstellbereich / Aus- wahl	Werkseinstellung
Frost ein	Einschalttemperatur	-40+15°C	+4 °C
Frost aus	Ausschalttemperatur	-39+16°C	+6 °C
Kollektor	Kollektorfeld	systemabhängig	systemabhängig
Speicher (1 4)	Speicherreihenfolge	systemabhängig	systemabhängig
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion aktiviert den Ladekreis zwischen Kollektor und Speicher, wenn die Kollektortemperatur unter die eingestellte Einschalttemperatur fällt. So wird das Wärmeträgermedium gegen Einfrieren und Eindicken geschützt. Wenn die Ausschalttemperatur überschritten wird, schaltet die Solarpumpe wieder aus.

Die Speicher werden gemäß der eingestellten Speicherreihenfolge entladen. Wenn alle Speicher die Speichermindesttemperatur von 5°C erreicht haben, wird die Funktion inaktiv.

Der Pumpenausgang wird bei aktiver Funktion mit maximaler relativer Drehzahl angesteuert.

HINWEIS:

Da für diese Funktion nur die begrenzte Wärmemenge des Speichers zur Verfügung steht, sollte die Frostschutzfunktion nur in Gebieten angewendet werden, in denen nur an wenigen Tagen Temperaturen um den Gefrierpunkt erreicht werden. Diese Funktion sollte nur in Anlagen angewendet werden, in denen kein Frostschutzmit-

tel verwendet wird.

HINWEIS:

Bei Systemen mit 2 oder 3 Kollektorfeldern werden entsprechend 2 oder 3 getrennte Menüs angezeigt.

Frostschutz	
🕨 Frost ein	4 °C
Frost aus	6 °C
Kollektor	1,2

Parallelrelais

Ausgang

Funkt.

Speicher

NH-Unterdrück.	Ŧ
Ausgang	R4
Speicher	1,2
🗆 Spsoll	

Nachheizunterdrückung Solar/Wahlfunktionen/neue Funktion.../NH-Unterdrück.

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Ausgang	Bezugsausgang	systemabhängig	systemabhängig
Speicher	Speicherauswahl	systemabhängig	systemabhängig
Spsoll	Speichersolltemperatur	Ja, Nein	Nein
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, die Nachheizung eines Speichers zu unterdrücken, wenn dieser gerade solar beladen wird.

Diese Funktion wird aktiv, wenn ein vorher ausgewählter Speicher solar beladen wird.

"Solar beladen" bedeutet, dass die Speicherbeladung nur zum Zweck des Energieeintrags und nicht zu Kühlzwecken o. ä. vorgenommen wird.

Wenn die Option **Spsoll** aktiviert wird, findet die Nachheizunterdrückung nur statt, wenn die Speichertemperatur über der Speichersolltemperatur liegt.

Parallelrelais

R4

Aktiviert

1

Solar/Wahlfunktionen/neue Funktion.../Parallelrelais

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Ausgang	Parallelausgang	systemabhängig	systemabhängig
Speicher	Speicherauswahl	systemabhängig	systemabhängig
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Mit dieser Funktion kann z. B. ein Ventil mit einem eigenen Ausgang parallel zu einer Solarpumpe angesteuert werden.

Einschaltbedingung für die solare Parallelrelaisfunktion ist die Beladung eines oder mehrerer ausgewählter Speicher. Wenn einer der ausgewählten Speicher beladen wird, schaltet der Parallelausgang ein.

Die Parallelrelaisfunktion ist unabhängig davon, ob der Speicher zur solaren Beladung oder aufgrund einer solaren Wahlfunktion (z. B. Kollektorkühlung) beladen wird.

HINWEIS:

Wenn sich ein Relais im Handbetrieb befindet, wird der ausgewählte Parallelausgang nicht mitgeschaltet.

Bereitschaft		Ŧ
🕨 Тур	Sys.küh	١.
Speicher	1	1
Speicher	2	2

Bereitschaft

Solar/Wahlfunktionen/neue Funktion.../Bereitschaft

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Тур	Kühllogik-Variante	Koll.kühl., Sys.kühl.,	Aus
		Aus	
TKollmax.	Kollektormaximaltemperatur	70190°C	100°C
Speicher (1 4)	Speicherreihenfolge	systemabhängig	systemabhängig
Sp.kühlung	Option Speicherkühlung	Ja, Nein	Nein
ΔTEin	Einschalttemperaturdifferenz	1,030,0K	20,0 K
ΔTAus	Ausschalttemperaturdifferenz	0,529,5K	15,0K
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert,	Aktiviert
		Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Im Menü **Bereitschaft** werden verschiedene Kühlfunktionen angeboten, die dazu dienen, die Solaranlage bei starker Sonneneinstrahlung länger betriebsbereit zu halten.

Um das zu erreichen, können die eingestellten Speichermaximaltemperaturen überschritten werden. Die Reihenfolge für diese Überladung kann eingestellt werden. Ebenso kann jeder Speicher einzeln von der Überladung ausgeschlossen werden.

Für die Bereitschaftsfunktion stehen 2 Varianten zur Auswahl, die Systemkühlung und die Kollektorkühlung.

Typ Systemkühlung

Wenn die Einschalttemperaturdifferenz überschritten ist, werden die Speicher auch weiter beladen, wenn ihre jeweilige Maximaltemperatur erreicht ist, jedoch nur bis zur Speichernottemperatur. Die Speicher werden so lange weiter beladen, bis alle ihre Speichernottemperatur erreicht haben oder bis die Ausschalttemperaturdifferenz erreicht ist.

Typ Kollektorkühlung

Wenn die Kollektormaximaltemperatur überschritten ist, werden die Speicher über ihre jeweilige Maximaltemperatur hinaus beladen.

Die Speicher werden so lange weiter beladen, bis alle ihre Speichernottemperatur erreicht haben oder die Kollektormaximaltemperatur um mindestens 5K unterschritten wird.

Der Kollektorkühlbetrieb wird reglerintern als solare Beladung behandelt, es gelten die gemachten Einstellungen, z. B. Verzögerung, Mindestlaufzeit etc.

Zusätzlich zu jeder der beiden Varianten kann die Option Speicherkühlung aktiviert werden.

Option Speicherkühlung

Die Speicherkühlung dient dazu, stark erhitzte Speicher während der Nacht wieder herunterzukühlen, um für den folgenden Tag Wärmeaufnahmekapazität zu gewinnen.

Die Speicherkühlung wird nur aktiv, wenn die Speichermaximaltemperatur überschritten ist. Fällt zusätzlich die Kollektortemperatur unter die Speichertemperatur, wird die Solarpumpe eingeschaltet. Die Solarpumpe bleibt aktiv, bis die Speichertemperatur wieder unter die eingestellte Speichermaximaltemperatur fällt.

Die Reihenfolge der Kühlung ist die gleiche wie bei der Überladung durch System- oder Kollektorkühlung.

Drainback-Option

Solar/Wahlfunktionen/neue Funktion.../Drainback

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Befüllzeit	Drainback-Befüllzeit	130 min	5 min
Erhol.zeit	Erholungszeit	1,015,0 min	2,0 min
Initialis.	Initialisierungszeit	1100 s	60 s
Booster	Boosteroption	Ja, Nein	Nein
Ausgang	Ausgangsauswahl Booster-	systemabhängig	systemabhängig
	pumpe		
Drain-Impuls	Option Drainback-Impuls	Ja, Nein	Nein
Verzög.	Verzögerungszeit	130 min	3 min
Dauer	Drainback-Impuls-Lade-	160 s	10 s
	dauer		
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert,	Deaktiviert
		Schalter	
Sensor	Zuweisung Schaltereingang	-	-

In einem Drainback-System fließt das Wärmeträgermedium in einen Auffangbehälter, wenn keine solare Beladung stattfindet. Die Drainback-Option initiiert die Befüllung des Systems, wenn die solare Beladung beginnt.

In Drainback-Systemen sind zusätzliche Komponenten wie ein Vorratsbehälter notwendig. Die Drainback-Option nur aktivieren, wenn alle erforderlichen Komponenten fachgerecht installiert wurden.

Mit dem Parameter **Befüllzeit** wird die Befüllzeit eingestellt. Während dieser Zeit wird die Pumpe mit maximaler Drehzahl gefahren.

Mit dem Parameter **Erhol.zeit** wird die Zeitspanne eingestellt, in der die Ausschaltbedingung nach Beenden der Befüllzeit ignoriert wird.

D	Drainback 🚽		
Þ	Befüllzeit	5 min	
	Erhol.zeit	2.0 min	
	Initialis.	60 s	

Beispielschema für ein Drainback-System (R2 = Boosterpumpe)

Zwillingspumpe

Bezugsrelais

Ausgang

Laufzeit

Mit dem Parameter **Initialis**. wird die Zeitspanne, in der die Einschaltbedingung dauerhaft gegeben sein muss, bevor die Befüllung beginnt, eingestellt.

Die Option **Booster** dient dazu, eine 2. Pumpe während des Befüllens der Anlage zusätzlich einzuschalten. Der entsprechende Ausgang wird während der Befüllzeit mit 100 % Drehzahl eingeschaltet.

Die Option **Drain-Impuls** dient dazu, die Pumpe nach dem Entleeren des Systems nach einer Verzögerungszeit erneut für eine kurze Dauer einzuschalten. So entsteht eine Wassersäule, bei deren Zurückfallen eventuell im Kollektor verbliebenes Wasser mit in den Vorratsbehälter gesogen wird.

R4

RЗ

6 h

HINWEIS:

Wenn in Mehrspeichersystemen die Drainback-Option genutzt wird, muss im Menü Solar/Grundeinstellung/Ladelogik die Option Pausendrehzahl aktiviert werden!

Zwillingspumpe

Solar/Wahlfunktionen/neue Funktion.../Zwillingspumpe

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Ausgang	Ausgangsauswahl Zwillingspumpe	systemabhängig	systemabhängig
Bezugsrelais	Relaisauswahl Bezugsrelais	systemabhängig	-
Laufzeit	Pumpenlaufzeit	148 h	6 h
Vol.überw.	Option Volumenstromüberwachung	Ja, Nein	Nein
Sen. Vol.	Zuweisung Volumenstromsensor	systemabhängig	-
Verzög.	Verzögerungszeit	110 min	5 min
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion regelt in Systemen mit 2 gleichwertig nutzbaren Pumpen die gleichmäßige Verteilung ihrer Laufzeit.

Hat das ausgewählte Bezugsrelais die eingestellte Laufzeit überschritten, wird beim nächsten Einschaltvorgang der zugewiesene Ausgang (Zwillingspumpe) aktiviert. Alle Eigenschaften werden übernommen.

Hat auch der zugewiesene Ausgang seine Laufzeit überschritten, wird beim nächsten Einschaltvorgang wieder das ausgewählte Bezugsrelais aktiviert.

Die Volumenstromüberwachung kann zusätzlich aktiviert werden, um im Falle eines Durchflussfehlers die Zwillingspumpe zu aktivieren. Wenn die Volumenstromüberwachung aktiviert ist, erscheint eine Fehlermeldung, wenn am eingestellten Volumenstromsensor nach Ablauf der Verzögerungszeit kein Durchfluss gemessen wird. Der aktive Ausgang wird als defekt gesperrt, bis die Fehlermeldung quittiert wird. Der andere Ausgang wird aktiviert, eine Umschaltung findet nicht mehr statt, bis die Fehlermeldung quittiert ist.

Wenn die Fehlermeldung quittiert wird, führt der Regler einen Test durch, indem er den betroffenen Ausgang aktiviert und den Volumenstrom erneut überwacht.

Überwärmeabfuhr

Solar/Wahlfunktionen/neue Funktion.../Überwärmeabf.

Einstellkanal	Bedeutung	Einstellbereich/ Auswahl	Werkseinstel- lung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Тур	Variante (Pumpen- o. Ventillogik)	Ventil, Pumpe	Ventil
ΔTVentil	Temperaturdifferenz Ventil auf	0,010,0K	3,0K
Kollektor	Kollektorauswahl	systemabhängig	1
TKoll.	Kollektor-Übertemperatur	40190°C	110°C
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert

Sensor Zuweisung Schaltereingang

Diese Funktion dient dazu, im Falle starker Sonneneinstrahlung die entstehende überflüssige Wärme zu einem externen Wärmetauscher (z. B. Fan Coil) abzuführen, um die Kollektortemperatur im Betriebsbereich zu halten.

Im Menüpunkt **Typ** kann ausgewählt werden, ob die Überwärmeabfuhr über eine zusätzliche Pumpe oder ein Ventil aktiviert wird.

Beispielschema für Zwillingspumpen im solaren Vorlauf mit vorgelagertem Volumenmessteil

Überwärmeabf.	
Ausgang	R4
Тур	Ventil
ΔTVentil	3.0 K

Vol. stromüberw .	-
Sensor	IMP1
Bezugsrelais	R4
Speicher	1

Тур Ритре

Der zugewiesene Ausgang wird mit 100% eingeschaltet, wenn die Kollektortemperatur die eingestellte Kollektor-Übertemperatur erreicht.

Wenn die Kollektortemperatur um 5K unter die eingestellte Kollektor-Übertemperatur sinkt, wird der Ausgang wieder ausgeschaltet. Bei der Variante Pumpe arbeitet die Überwärmeabfuhr unabhängig von der solaren Beladung.

Typ Ventil

Wenn die Kollektortemperatur den Wert [**TKOII.** - **AT Ventil**] erreicht, wird der zugewiesene Ausgang eingeschaltet, um das Ventil zu öffnen. Wenn die Kollektortemperatur die Kollektor-Übertemperatur erreicht, wird die Solarpumpe eingeschaltet. Wenn die Kollektortemperatur um 5 K unter die eingestellte Kollektor-Übertemperatur sinkt, wird die Solarpumpe wieder ausgeschaltet. Wenn die Kollektortemperatur um 10 K unter die Einschalttemperatur sinkt, wird das Ventil wieder in die Ausgangsposition geschaltet.

Die Funktion Überwärmeabfuhr wird deaktiviert und eine Fehlermeldung generiert, wenn eine der Speichertemperaturen ihre jeweilige Speichermaximaltemperatur um mehr als 10K überschreitet. Wird diese Temperatur um die Hysterese (**Solar/Grundeinstellung/Speicher**) unterschritten, wird die Überwärmeabfuhrfunktion wieder freigegeben.

Die Kollektor-Übertemperatur muss mindestens 10K niedriger als die Kollektornottemperatur eingestellt werden.

Volumenstromüberwachung

Solar/Wahlfunktionen/neue Funktion.../Vol.stromübw.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Sensor	Zuweisung Volumenstromsensor	systemabhängig	-
Bezugsrelais	Relaisauswahl Bezugsrelais	systemabhängig	-
Speicher	Speicherauswahl	systemabhängig	1
Zeit	Verzögerungszeit	1300s	30 s
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Fehlfunktionen, die den Durchfluss verhindern, zu erkennen und den betroffenen Ausgang auszuschalten. So sollen Anlagenschäden, z. B. durch ein Trockenlaufen der Pumpe, vermieden werden.

Wird die Volumenstromüberwachung aktiviert, erscheint eine Fehlermeldung, wenn am eingestellten Volumenstromsensor nach Ablauf der Verzögerungszeit kein Volumenstrom gemessen wird.

- Wenn ein Bezugsrelais ausgewählt ist, wird die Volumenstromüberwachung aktiv, wenn das zugewiesene Relais eingeschaltet ist. Im Fehlerfall wird das gesamte solare System gesperrt.
- Wenn sowohl ein Speicher als auch ein Bezugsrelais ausgewählt sind, wird die Volumenstromüberwachung aktiv, wenn das zugewiesene Relais eingeschaltet ist. Im Fehlerfall wird der zugewiesene Speicher für die weitere Beladung gesperrt, bis die Fehlermeldung quittiert wird. Der nächste für eine Beladung freigegebene Speicher wird beladen.

Die Fehlermeldung erscheint sowohl im Menü **Status/Meldungen** als auch im Menü **Status/Solar/Vol.stromübw.**

Drucküberw.	+
Sensor	Ga1
□Überdruck	

Drucküberwachung

HINWEIS:

Die Drucküberwachung funktioniert nur, wenn ein Grundfos Direct Sensor
 ${\ensuremath{\mathbb N}}$ vom Typ RPS verwendet wird.

Solar/Wahlfunktionen/neue Funktion.../Drucküberw.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Sensor	Zuweisung Drucksensor	Ga1, Ga2	-
Minderdruck	Option Minderdrucküberwachung	Ja, Nein	Nein
Ein	Einschaltschwelle	0,09,7 bar	0,7 bar
Aus	Ausschaltschwelle	0,19,8 bar	1,0 bar
Abschaltung	Abschaltoption	Ja, Nein	Nein
Überdruck	Option Überdrucküberwachung	Ja, Nein	Nein
Ein	Einschaltschwelle	0,310,0 bar	5,5 bar
Aus	Ausschaltschwelle	0,29,9 bar	5,0 bar
Abschaltung	Abschaltoption	Ja, Nein	Nein
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Über- oder Minderdruckzustände in der Anlage zu erkennen und gegebenenfalls betroffene Anlagenteile auszuschalten. So sollen Anlagenschäden vermieden werden.

Minderdruck

Wenn der Anlagendruck unter den einstellbaren Wert **Ein** sinkt, erscheint eine Fehlermeldung. Ist für die Minderdrucküberwachung die Option **Abschaltung** aktiviert, wird im Fehlerfall zusätzlich das solare System abgeschaltet.

Wenn der einstellbare Wert Aus erreicht oder überschritten wird, schaltet das System wieder ein.

Bei der Überwachungsfunktion **Minderdruck** ist **Aus** immer mindestens 0,1 bar höher als **Ein**. Die jeweiligen Einstellbereiche passen sich dementsprechend an.

Überdruck

Wenn der Anlagendruck über den einstellbaren Wert **Ein** steigt, erscheint eine Fehlermeldung. Ist für die Überdrucküberwachung die Option **Abschaltung** aktiviert, wird im Fehlerfall zusätzlich das solare System abgeschaltet.

Wenn der einstellbare Wert Aus erreicht oder unterschritten wird, schaltet das System wieder ein.

Bei der Überwachungsoption **Überdruck** ist **Ein** immer mindestens 0,1 bar höher als **Aus**. Die jeweiligen Einstellbereiche passen sich dementsprechend an.

7.3 FUNKTIONSKONTROLLE

Solar/Funktionskontrolle

HINWEIS:

Einstoll.

Einstellkanal	Bedeutung	bereich/ Auswahl	Werkseinstellung
∆T zu hoch	Option ∆T-Überwachung	Ja, Nein	Nein
Nachtzirkulation	Option Überwachung Nachtzirkulation	Ja, Nein	Nein
VL/RL vertauscht	Option Überwachung VL/RL ver- tauscht	Ja, Nein	Nein
Spmax	Option Speichermaximaltemperaturü- berwachung	Ja, Nein	Ja
Speicher	Speicherauswahl	systemab- hängig	systemabhängig

Funktionskontrolle → ●□AT zu hoch □Nachtzirkulation □VL/RL vertauscht

∆T-Überwachung

Diese Funktion dient dazu, die Temperaturdifferenz zu überwachen. Die Warnmeldung **AT zu hoch** erscheint, wenn eine solare Beladung über einen Zeitraum von 20 min mit einer Differenz größer als 50K stattfindet. Der Regelbetrieb wird nicht abgebrochen, jedoch sollte die Anlage überprüft werden.

Mögliche Ursachen sind:

- zu schwache Pumpenleistung
- blockierte Anlagenteile
- Durchströmungsfehler im Kollektorfeld
- Luft in der Anlage
- defektes Ventil/defekte Pumpe

Nachtzirkulation

Diese Funktion dient dazu, ein Auskühlen des Speichers durch thermischen Auftrieb im Solarkreis zu detektieren und zu melden. Die Meldung wird aktiv, wenn zwischen 23:00 und 5:00 Uhr eine der folgenden Bedingungen für mindestens 1 min vorliegt:

- die Kollektortemperatur überschreitet 40 °C
- der Wert ΔTEin ist überschritten

Die Verzögerungszeit von 1 min verhindert das Auslösen der Warnmeldung aufgrund von kurzzeitigen Störungen.

Mögliche Ursachen sind:

- defekte Schwerkraftbremse
- defektes Ventil
- Uhrzeit falsch eingestellt

Vor- und Rücklauf vertauscht

Diese Funktion dient dazu, die Vertauschung von Vor- und Rücklauf sowie einen falsch platzierten Kollektorsensor zu erkennen und zu melden. Dazu wird während der Einschaltphase der Solarpumpe die Kollektortemperatur auf Plausibilität geprüft. Die Überwachung **VL/RL vertauscht** löst erst eine Fehlermeldung aus, wenn die Plausibilitätskriterien 5-mal hintereinander nicht erfüllt wurden.

HINWEIS:

Der Fehler **!VL/RL vertauscht** kann nur korrekt detektiert und gemeldet werden, wenn der Kollektorsensor die Temperatur am Kollektoraustritt direkt im Medium misst. Wenn der Kollektorsensor nicht richtig positioniert ist, kann es zu Falschmeldungen kommen.

➔ Den Kollektorsensor am Kollektoraustritt direkt im Medium positionieren oder die Funktionskontrolle VL/RL vertauscht deaktivieren.

Speichermaximaltemperatur

Diese Funktion dient dazu, eine Überschreitung der eingestellten Speichermaximaltemperatur festzustellen und zu melden. Der Regler vergleicht die aktuelle Speichertemperatur mit der eingestellten Speichermaximaltemperatur und kontrolliert somit die Speicherladekreise. Die Speichermaximaltemperatur gilt als überschritten, wenn die gemessene Temperatur am Speichersensor die eingestellte Speichermaximaltemperatur um mindestens 5 K überschreitet. Erst wenn die Speichertemperatur wieder die eingestellte Speichermaximaltemperatur unterschritten hat, wird die Überwachung wieder aktiv.

Im Kanal **Speicher** kann ausgewählt werden, welche Speicher überwacht werden sollen. Mögliche Ursache für eine unerwünschte Überschreitung der Speichermaximaltemperatur ist ein defektes Ventil.

Urlaubsfunktion	Ŧ
🕨 Kühlung 🛛 K	oll.kühl.
TKollmax.	100 °C
Speicher 1	1

Urlaubsfunktion Solar/Urlaubsfunktion

Finstellkanal	Bedeutung	Einstellbereich/Aus-	Werkseinstel-
	200000000	wahl	lung
Kühlung	Kühllogik-Variante	Koll.kühl., Sys.kühl., Aus	Aus
TKollmax.	Kollektormaximaltemperatur	70190°C	100°C
Speicher (14)	Speicherreihenfolge	systemabhängig	systemabhängig
Sp.kühlung	Option Speicherkühlung	Ja, Nein	Ja
ΔTEin	Einschalttemperaturdifferenz	1,030,0K	20,0 K
ΔTAus	Ausschalttemperaturdifferenz	0,529,5K	15,0K
Spmax (14)	Temperatur Speicherkühlung	495°C	40°C
Überwärmeabf.	Überwärmeabfuhr Speicher	Ja, Nein	Nein
Ausgang	Ausgangsauswahl	systemabhängig	-
Sensor	Sensorauswahl	systemabhängig	-
TSpEin	Einschalttemperatur	595°C	65°C
TSpAus	Ausschalttemperatur	494°C	45°C

Mit der Urlaubsfunktion kann der Regelbetrieb für eine Abwesenheit eingestellt werden. Sie dient dazu, das System betriebsbereit zu halten und eine dauerhafte thermische Belastung zu reduzieren.

Die im Folgenden beschriebenen Einstellungen werden erst aktiv, wenn die Urlaubsfunktion mit dem Parameter **Urlaubstage** aktiviert wurde.

Mit dem Parameter **Urlaubstage** können die Tage der Abwesenheit eingestellt werden.

 \Rightarrow Um die Tage der Abwesenheit einstellen zu können, Taste \bigcirc für 5 s gedrückt halten.

Wenn ein Wert größer 0 eingestellt wird, ist die Funktion mit den im Menü Urlaubsfunktion vorgenommenen Einstellungen aktiviert und die Tage werden ab 00:00 Uhr heruntergezählt. Wenn 0 eingestellt wird, ist die Funktion deaktiviert.

Die verbleibenden Urlaubstage werden im Statusmenü angezeigt und können dort nachträglich geändert werden.

Es stehen 2 Kühlfunktionen zur Verfügung: Systemkühlung, Kollektorkühlung

Typ Systemkühlung

Wenn die Einschalttemperaturdifferenz überschritten ist, werden die Speicher auch weiter beladen, wenn ihre jeweilige Maximaltemperatur erreicht ist, jedoch nur bis zur Speichernottemperatur. Die Speicher werden so lange weiter beladen, bis alle ihre Speichernottemperatur erreicht haben oder bis die Ausschalttemperaturdifferenz erreicht ist.

Typ Kollektorkühlung

Wenn die Kollektormaximaltemperatur überschritten ist, werden die Speicher über ihre jeweilige Maximaltemperatur hinaus beladen.

Die Speicher werden so lange weiter beladen, bis alle ihre Speichernottemperatur erreicht haben oder die Kollektormaximaltemperatur um mindestens 5K unterschritten wird.

Der Kollektorkühlbetrieb wird reglerintern als solare Beladung behandelt, es gelten die gemachten Einstellungen, z. B. Verzögerung, Minimallaufzeit etc.

Zusätzlich zu jeder der beiden Varianten kann die Speicherkühlung aktiviert werden.

Option Speicherkühlung

Die Speicherkühlung dient dazu, stark erhitzte Speicher während der Nacht wieder herunterzukühlen, um für den folgenden Tag Wärmeaufnahmekapazität zu gewinnen.

Die Speicherkühlung wird nur aktiv, wenn die Speichermaximaltemperatur überschritten ist. Fällt zusätzlich die Kollektortemperatur unter die Speichertemperatur, wird die Solarpumpe eingeschaltet. Die Solarpumpe bleibt aktiv, bis die Speichertemperatur wieder unter die eingestellte Speichermaximaltemperatur fällt.

Die Reihenfolge der Kühlung ist die gleiche wie bei der Überladung durch System- oder Kollektorkühlung.

Option Überwärmeabfuhr Speicher

Diese Option dient dazu, im Falle starker Sonneneinstrahlung die entstehende überflüssige Wärme aus dem Speicher zu einem externen Wärmetauscher (z. B. Fan Coil) oder Heizkörper

Experte

⊠ Vorlaufsensor

Rücklaufsensor

Sensor

Wenn die Einschalttemperatur am ausgewählten Sensor erreicht wird, schaltet der ausgewählte Ausgang so lange ein, bis die Ausschalttemperatur unterschritten wird.

7.4 EXPERTENMENÜ SOLAR

HINWEIS:

Gründen nicht einwandfrei.

i

Das Expertenmenü ist nur sichtbar, wenn der Installateur-Bedienercode eingegeben wurde. Solar/Experte

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Vorlaufsensor	Option Vorlaufsensor	Ja, Nein	Nein
Sensor	Zuweisung Vorlaufsensor	systemabhängig	-
Rücklaufsensor	Option Rücklaufsensor	Ja, Nein	Nein
Sensor	Zuweisung Rücklaufsensor	systemabhängig	-

Im Expertenmenü können ein Vorlauf- und ein Rücklaufsensor ausgewählt und zugewiesen werden. Die aktivierten Sensoren werden dann zur Ermittlung der Ausschaltbedingung genutzt.

In Systemen mit 2 oder 3 Kollektorfeldern arbeitet diese Funktion aus hydraulischen

Beispiel für die Positionierung der Vor- und Rücklaufsensoren

Anlage / Wahlfunktionen

· Parallelrelais neue Funktion... zurück

Neue Funktion ▶ Parallelrelais Mischer Zonenladung

Parallelrelais	Ŧ
🕨 Ausgang	R4
Bezugsrelais	-
□Nachlauf	

In diesem Menü können alle Einstellungen für den nicht-solaren Teil der Anlage gemacht werden.

8.1 WAHLFUNKTIONEN

Unter diesem Menüpunkt können Wahlfunktionen für die Anlage ausgewählt und eingestellt werden.

Die Anzahl und Art der angebotenen Wahlfunktionen hängt von den bereits gemachten Einstellungen ab.

Für Informationen zur Einstellung von Wahlfunktionen siehe Seite 16.

Parallelrelais

Anlage / Wahlfunktionen / neue Funktion ... / Parallelrelais

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Bezugsrelais	Relaisauswahl Bezugsrelais	systemabhängig	-
Nachlauf	Option Nachlauf	Ja, Nein	Nein
Dauer	Nachlaufzeit	130 min	1 min
Verzögerung	Option Verzögerung	Ja, Nein	Nein
Dauer	Verzögerungszeit	130 min	1 min
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert,	Aktiviert
		Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, einen ausgewählten Ausgang immer mit einem ausgewählten Bezugsrelais zusammen zu schalten. So kann z. B. ein Ventil mit einem eigenen Ausgang parallel zur Pumpe angesteuert werden.

Wenn die Option **Nachlauf** aktiviert wird, bleibt der Ausgang um die eingestellte Nachlaufzeit eingeschaltet, nachdem das Bezugsrelais ausgeschaltet wurde.

Wenn die Option **Verzögerung** aktiviert wird, schaltet der Ausgang erst nach der eingestellten Dauer. Wird das Bezugsrelais während der Verzögerungszeit ausgeschaltet, bleibt auch der Parallelausgang ausgeschaltet.

HINWEIS:

Wenn sich ein Relais im Handbetrieb befindet, wird der ausgewählte Ausgang nicht mitgeschaltet.

Mischer

Anlage / Wahlfunktionen / neue Funktion ... / Mischer

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Mischer zu	Ausgangsauswahl Mischer zu	systemabhängig	systemabhängig
Mischer auf	Ausgangsauswahl Mischer auf	systemabhängig	systemabhängig
Sensor	Zuweisung Sensor	systemabhängig	systemabhängig
TMischer	Mischer-Zieltemperatur	0130°C	60 °C
Intervall	Mischerintervall	120 s	2 S
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, die Vorlauf-Isttemperatur an die Mischer-Zieltemperatur anzugleichen. Dazu wird der Mischer entsprechend der Abweichung im Zeittakt auf- bzw. zugefahren. Der Mischer wird mit dem eingestellten Intervall angesteuert. Die Pause ergibt sich aus der Abweichung des Istwertes vom Sollwert.

Mischer	
Mischer zu	RB
Mischer auf	R4
Sensor	S4

Zonenladung	-
Ausgang	R3
Sensor oben	S3
Sensor unten	S4

Zonenladung Anlage / Wahlfunktionen / neue Funktion... / Zonenladung

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstel- lung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Sensor oben	Zuweisung Sensor oben	systemabhängig	systemabhängig
Sensor unten	Zuweisung Sensor unten	systemabhängig	systemabhängig
TEin	Einschalttemperatur	094°C	45 °C
TAus	Ausschalttemperatur	195°C	60 °C
Timer	Timer-Funktion	Ja, Nein	Nein
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert,	Aktiviert
		Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, einen bestimmten Speicherbereich zwischen 2 Sensoren durchgängig zu beladen. Dazu werden 2 Sensoren zur Überwachung der Einschalt- bzw. Ausschaltbedingungen genutzt. Als Bezugsparameter gelten die Ein- und Ausschalttemperaturen.

Sinken die gemessenen Temperaturen an beiden zugewiesenen Sensoren unter die eingegebene Einschalttemperatur, wird der Ausgang eingeschaltet. Der Ausgang wird wieder abgeschaltet, wenn an beiden Sensoren die Temperatur über die Ausschalttemperatur angestiegen ist. Ist einer der beiden Sensoren defekt, wird die Zonenladung abgebrochen bzw. unterdrückt.

Für Informationen zur Timereinstellung siehe Seite 12.

Fehlerrelais

Anlage/Wahlfunktionen/neue Funktion.../Fehlerrelais

Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Ausgangsauswahl	systemabhängig	systemabhängig
Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Zuweisung Schaltereingang	-	-
	Bedeutung Ausgangsauswahl Aktivierung / Deaktivierung Zuweisung Schaltereingang	BedeutungEinsteinbereich / Aus- wahlAusgangsauswahlsystemabhängigAktivierung / DeaktivierungAktiviert, Deaktiviert, SchalterZuweisung Schaltereingang-

Diese Funktion dient dazu, einen Ausgang im Fehlerfall zu schalten. So kann z. B. ein Signalgeber angeschlossen werden, der Fehlerfälle meldet.

Wenn die Funktion aktiviert ist, schaltet der zugewiesene Ausgang, wenn ein Fehler vorliegt. Ist zusätzlich die Volumenstromüberwachung und/oder die Drucküberwachung aktiviert, schaltet der zugewiesene Ausgang auch, wenn ein Volumenstrom- oder Druckfehler detektiert wird.

Wärmeaustausch	Ŧ
🕨 Ausgang	R3
Sen. Quelle	S3
Sen. Senke	S4

Wärmeaustausch

Anlage / Wahlfunktionen / neue Funktion ... / Wärmeaustausch

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Sen. Quelle	Zuweisung Sensor Wärmequelle	systemabhängig	systemabhängig
Sen. Senke	Zuweisung Sensor Wärmesenke	systemabhängig	systemabhängig
ΔTEin	Einschalttemperaturdifferenz	1,030,0K	5,0K
ΔTAus	Ausschalttemperaturdifferenz	0,529,5K	3,0 K
ΔTSoll	Solltemperaturdifferenz	1,540,0K	6,0K
ТМах	Maximaltemperatur des zu beladenden Speichers	1095°C	60°C
TMin	Minimaltemperatur des zu entladenden Speichers	1095°C	10°C
Timer	Timer-Funktion	Ja, Nein	Nein
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Wärme von einer Wärmequelle an eine Wärmesenke zu übertragen. Der zugewiesene Ausgang wird aktiviert, wenn alle Einschaltbedingungen erfüllt sind:

- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Einschalttemperaturdifferenz überschritten
- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Ausschalttemperaturdifferenz nicht unterschritten
- die Temperatur am Wärmequellensensor liegt über der Minimaltemperatur
- die Temperatur am Wärmesenkensensor liegt unter der Maximaltemperatur
- eines der eingestellten Zeitfenster ist aktiv (falls die Option Timer gewählt ist)

Wird die Solltemperaturdifferenz um 1/10 des Anstiegswertes überschritten, erhöht sich die Drehzahl der Pumpe um eine Stufe (1 %).

Wenn die Option Timer aktiviert wird, erscheint eine Wochenzeitschaltuhr, mit der Zeitfenster für den Betrieb der Funktion eingestellt werden können.

Festbrennstoffkessel

Für Informationen zur Timereinstellung siehe Seite 12.

Anlage / Wahlfunktionen / neue Funktion ... / Feststoffkessel

Feststoffkessel	-
Ausgang	R4
Sen. Kessel	S3
Sen. Speicher	S4

Feststoffkessel	Ŧ
🕨 Ausgang	R4
Sen. Kessel	S3
Sen. Speicher	S4

Einstellkanal	Bedeutung	reich/Auswahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Sen. Kessel	Zuweisung Sensor Festbrenn- stoffkessel	systemabhängig	systemabhängig
Sen. Speicher	Zuweisung Sensor Speicher	systemabhängig	systemabhängig
ΔTEin	Einschalttemperaturdifferenz	2,030,0K	6,0K
ΔTAus	Ausschalttemperaturdifferenz	1,029,0K	4,0K
ΔTSoll	Solltemperaturdifferenz	3,040,0К	10,0 K
TSpmax	Maximaltemperatur	495°C	60°C
TMin Kessel	Minimaltemperatur	495°C	60°C
Zieltemperatur	Option Zieltemperatur	Ja, Nein	Nein
Zieltemp.	Zieltemperatur	3085°C	65°C
Sensor	Bezugssensor Zieltemperatur	systemabhängig	systemabhängig
Mischer	Option Mischer	Ja, Nein	Nein
Mischer zu	Ausgangsauswahl Mischer zu	systemabhängig	systemabhängig
Mischer auf	Ausgangsauswahl Mischer auf	systemabhängig	systemabhängig
Sensor	Zuweisung Sensor Mischer	systemabhängig	systemabhängig
ΔTAuf	Temperaturdifferenz Mischer auf	0,530,0K	5,0K
ΔTZU	Temperaturdifferenz Mischer zu	0,029,5K	2,0K
Intervall	Mischerintervall	120 s	2 S
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Wärme aus einem Festbrennstoffkessel an einen Speicher zu übertragen. Der zugewiesene Ausgang wird aktiviert, wenn alle Einschaltbedingungen erfüllt sind:

- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Einschalttemperaturdifferenz überschritten
- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Ausschalttemperaturdifferenz nicht unterschritten
- die Temperatur am Festbrennstoffkesselsensor liegt über der Minimaltemperatur
- die Temperatur am Speichersensor liegt unter der Maximaltemperatur

Wenn die Solltemperaturdifferenz überschritten ist, setzt die Drehzahlregelung ein. Bei jeder Abweichung um 1/10 des eingestellten Anstiegswertes wird die Drehzahl um 1% angepasst. Wird die Option **Zieltemperatur** ausgewählt, verändert sich die Arbeitsweise der Drehzahlregelung. Der Regler behält die Minimaldrehzahl bei, bis die Temperatur am zugewiesenen Sensor die eingestellte Zieltemperatur überschritten hat.

Die Option Mischer dient dazu, die Kesselrücklauftemperatur über der einstellbaren Temperatur TMin Kessel zu halten. Der Mischer wird mit dem eingestellten Intervall angesteuert.

Rücklaufanheb.	Ŧ
Ausgang	R4
Sen. Rücklauf	S4
Sen. Quelle	S3

Rücklaufanhebung Anlage / Wahlfunktionen / neue Funktion... / Rücklaufanheb.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Sen. Rücklauf	Zuweisung Sensor Rücklauf	systemabhängig	systemabhängig
Sen. Quelle	Zuweisung Sensor Wärmequelle	systemabhängig	systemabhängig
ΔTEin	Einschalttemperaturdifferenz	2,030,0K	5,0K
ΔTAus	Ausschalttemperaturdifferenz	1,029,0K	3,0 K
Sommer aus	Sommerabschaltung	Ja, Nein	Nein
Sensor	Zuweisung Außentemperatursensor	systemabhängig	systemabhängig
TAus	Ausschalttemperatur	1060°C	20°C
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti-	Aktiviert
		viert, Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Wärme aus einer Wärmequelle an den Heizkreisrücklauf zu übertragen. Der zugewiesene Ausgang wird aktiviert, wenn alle Einschaltbedingungen erfüllt sind:

- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Einschalttemperaturdifferenz überschritten
- die Temperaturdifferenz zwischen den zugewiesenen Sensoren hat die Ausschalttemperaturdifferenz nicht unterschritten
- wenn **Sommer aus** aktiviert ist, liegt die Temperatur am Außensensor unter dem eingestellten Wert für die Außentemperatur

Mit der Sommerabschaltung kann die Rücklaufanhebung außerhalb der Heizperiode unterdrückt werden.

Funktionsblock

Anlage / Wahlfunktionen / neue Funktion ... / Funktionsblock

Finstellkanal	Redeutung	Einstellbe-	Werkseinstel-
Lingtontanai	beacturing	reich/Auswahl	lung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Thermostat a	Thermostatfunktion a	Ja, Nein	Nein
Th-a ein	Einschalttemperatur Thermostat a	-40+250°C	+40°C
Th-a aus	Ausschalttemperatur Thermostat a	-40+250°C	+45°C
Sensor	Sensor Thermostat a	systemabhängig	systemabhängig
Thermostat b	Thermostatfunktion b	Ja, Nein	Nein
Th-b ein	Einschalttemperatur Thermostat b	-40+250°C	+40°C
Th-b aus	Ausschalttemperatur Thermostat	-40+250°C	+45°C
Sensor	Sensor Thermostat b	systemabhängig	systemabhängig
Δ T-Funktion	Differenzfunktion	Ja, Nein	Nein
ΔTEin	Einschalttemperaturdifferenz	1,050,0K	5,0K
ΔTAus	Ausschalttemperaturdifferenz	0,549,5K	3,0K
ΔTSOII	Solltemperaturdifferenz	3100K	10K
Sen. Quelle	Sensor Wärmequelle	systemabhängig	systemabhängig
Sen. Senke	Sensor Wärmesenke	systemabhängig	systemabhängig
Timer	Timer-Funktion	Ja, Nein	Nein
Bezugsausg.	Bezugsausgang-Funktion	Ja, Nein	Nein
Modus	Bezugsausgang-Modus	OR, AND, NOR, NAND	OR
Ausgang	Bezugsausgang 1	alle Ausgänge	-
Ausgang	Bezugsausgang 2	alle Ausgänge	-
Ausgang	Bezugsausgang 3	alle Ausgänge	-
Ausgang	Bezugsausgang 4	alle Ausgänge	-
Ausgang	Bezugsausgang 5	alle Ausgänge	-
Volumenstrom	Volumenstrom-Funktion	Ja, Nein	Nein
Vol. ein	Einschalt-Volumenstrom	1,0 999,0 l/min	8,0 l/min
Vol. aus	Ausschalt-Volumenstrom	0,5 998,5 l/min	7,5 l/min
Sen. Vol.	Volumenstromsensor	systemabhängig	-
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Funktionsblock	
Ausgang	R4
🗆 Thermostat a	
□ Thermostat b	

Zusätzlich zu den vordefinierten Wahlfunktionen stehen Funktionsblöcke zur Verfügung, die sich aus Thermostat-, Timer-, Differenz-, Bezugsausgang- und Volumenstrom-Funktionen zusammensetzen. Mit ihnen lassen sich weitere Komponenten bzw. Funktionen realisieren.

Für die Funktionsblöcke können Sensoren und freie Ausgänge zugewiesen werden. Innerhalb eines Funktionsblockes sind die Funktionen miteinander verknüpft (UND-Verknüpfung), d. h. die Schaltbedingungen aller aktivierten Funktionen müssen erfüllt sein, damit der zugeordnete Ausgang schaltet. Sobald eine einzige Schaltbedingung nicht mehr erfüllt ist, schaltet der Ausgang aus.

Thermostatfunktion

Wenn die eingestellte Einschalttemperatur (Th-(x) ein) erreicht ist, gilt die Schaltbedingung für die Thermostatfunktion als erfüllt.

Wenn die eingestellte Ausschalttemperatur (Th-(x) aus) erreicht ist, gilt die Schaltbedingung für die Thermostatfunktion nicht mehr als erfüllt.

Den Bezugssensor im Kanal Sensor zuweisen.

Maximaltemperaturbegrenzung mit (Th-(x) aus) > (Th-(x) ein) einstellen, Minimaltemperaturbegrenzung mit (Th-(x) ein) > (Th-(x) aus). Die Temperaturen können nicht gleichgesetzt werden.

Δ **T-Funktion**

Wenn die eingestellte Einschalttemperaturdifferenz (Δ TEin) erreicht ist, gilt die Schaltbedingung für die Δ T-Funktion als erfüllt.

Wenn die eingestellte Ausschalttemperaturdifferenz (Δ TAus) erreicht ist, gilt die Schaltbedingung für die Δ T-Funktion nicht mehr als erfüllt.

Die Δ T-Funktion ist mit einer Drehzahlregelungsfunktion ausgestattet. Es können eine Solltemperaturdifferenz und eine Minimaldrehzahl eingestellt werden. Der fest eingestellte Wert für den Anstieg liegt bei 2 K.

Bezugsausgang

Es können bis zu 5 Bezugsausgänge ausgewählt werden. Im Menüpunkt **Modus** kann ausgewählt werden, ob die Bezugsausgänge in Reihe (AND), parallel (OR), in Reihe invertiert (NAND) oder parallel invertiert (NOR) geschaltet werden sollen.

Modus OR

Wenn mindestens einer der Bezugsausgänge eingeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion als erfüllt.

Wenn keiner der Bezugsausgänge eingeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion nicht als erfüllt.

Modus NOR

Wenn keiner der Bezugsausgänge eingeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion als erfüllt.

Wenn mindestens ein Bezugsausgang eingeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion nicht als erfüllt.

Modus AND

Wenn alle Bezugsausgänge eingeschaltet sind, gilt die Schaltbedingung für die Bezugsausgang-Funktion als erfüllt.

Wenn mindestens ein Bezugsausgang ausgeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion nicht als erfüllt.

Modus NAND

Wenn mindestens einer der Bezugsausgänge ausgeschaltet ist, gilt die Schaltbedingung für die Bezugsausgang-Funktion als erfüllt.

Wenn alle Bezugsausgänge eingeschaltet sind, gilt die Schaltbedingung für die Bezugsausgang-Funktion nicht als erfüllt.

Volumenstrom

Wenn der eingestellte Einschalt-Volumenstrom überschritten ist, gilt die Schaltbedingung für die Volumenstrom-Funktion als erfüllt.

Wenn der eingestellte Ausschalt-Volumenstrom unterschritten ist, gilt die Schaltbedingung für die Volumenstrom-Funktion nicht mehr als erfüllt.

Der Volumenstromsensor für diese Funktion kann eingestellt werden.

HINWEIS:

RMS	Ŧ
Mischer auf	R2
Mischer zu	R3
Sen. Speicher	S3

RMS

Anlage / Wahlfunktionen / neue Funktion ... / RMS

Einstellka- nal	Bedeutung	Einstellbereich/ Auswahl	Werkseinstellung
Mischer auf	Ausgangsauswahl Mischer auf	systemabhängig	systemabhängig
Mischer zu	Ausgangsauswahl Mischer zu	systemabhängig	systemabhängig
Sen. Speicher	Zuweisung Speichersensor	systemabhängig	systemabhängig
Sen. HK-RL	Zuweisung Heizkreis-Rücklauf-	systemabhängig	systemabhängig
	sensor		
Sen. Kessel-RL	Zuweisung Kesselrücklaufsensor	systemabhängig	systemabhängig
ΔTEin	Einschalttemperaturdifferenz	1,025,0 K	5,0 K
ΔTAus	Ausschalttemperaturdifferenz	0,524,0 K	3,0 K
ΔTSoll	Solltemperaturdifferenz	-20+25K	+15K
ТМах	Maximaltemperatur Kesselrücklauf	1080°C	60°C
Intervall	Mischerintervall	120 s	2 S
Heizkreis	Erkennung Regler-Heizkreis aktiv	Intern, Extern	Intern
Heizkreis	Zuweisung Heizkreis	Heizkreis 17	-
Laufzeit	Mischerlaufzeit	10600 s	140 s
Detektion	Öffnungsgrad Mischer	50 90 %	60 %
Zeit	Zeitpunkt der automatischen	00:00 23:45	00:00
	Justierung		
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti-	Aktiviert
		viert, Schalter	
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient der Heizungsunterstützung.

Über einen Mischer wird Wärme aus dem Speicher dem Heizungsrücklauf beigemischt und so dem Heizkreis zur Verfügung gestellt. Der Regler vergleicht die Temperatur am ausgewählten Speichersensor mit der Temperatur am Heizkreisrücklauf. Wenn die Temperatur im Speicher um die Einschalttemperaturdifferenz höher ist als die Temperatur im Heizungsrücklauf, wird der Mischer angesteuert, um dem Heizkreisrücklauf Solarwärme aus dem Speicher beizumischen. Dazu wird der Mischer entsprechend der Abweichung im Zeittakt auf- bzw. zugefahren. Der Mischer wird mit dem eingestellten Intervall angesteuert. Die Pause ergibt sich aus der Abweichung des Istwertes vom Sollwert.

Vol. stromüberw .	Ŧ
Sensor	IMP1
Bezugsrelais	R4
Zeit	30 s

Die Heizkreisrücklauftemperatur wird so um **ATSOII** angehoben. Die einstellbare Maximaltemperatur Kesselrücklauf begrenzt die Höhe der Mischtemperatur. Wenn die Speichertemperatur um die Ausschaltdifferenz unter die Heizkreisrücklauftemperatur sinkt, fährt der Mischer vollständig zu. Die Laufzeit definiert die Zeit, die der Mischer benötigt, um von der Ausgangs- in die Endposition zu fahren. Der Einstellwert **Detektion** gibt an, wie groß der Öffnungsgrad des Mischers zur Prüfung der Heizkreisaktivität sein soll. Die **Zeit** definiert den Zeitpunkt, an dem der Mischer zur Justierung alle 24 Stunden komplett zugefahren wird.

Heizkreis intern

Wenn im Parameter **Heizkreis Intern** ausgewählt ist, wird die Funktion **RMS** nur dann aktiv, wenn der ausgewählte Heizkreis des Reglers auch aktiv ist. Dazu muss der ausgewählte Heizkreis vom Regler oder über ein angeschlossenes Modul geregelt werden.

Volumenstromüberwachung Anlage/Wahlfunktionen/neue Funktion.../Vol.stromüberw.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstel- lung
Sensor	Zuweisung Volumenstromsen- sor	systemabhängig	-
Bezugsrelais	Relaisauswahl Bezugsrelais	systemabhängig	-
Zeit	Verzögerungszeit	1300s	30 s
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, Fehlfunktionen, die den Durchfluss verhindern, zu erkennen und den betroffenen Ausgang auszuschalten. So sollen Anlagenschäden, z. B. durch ein Trockenlaufen der Pumpe, vermieden werden.

Wird die Volumenstromüberwachung aktiviert, erscheint eine Fehlermeldung, wenn am eingestellten Volumenstromsensor nach Ablauf der Verzögerungszeit kein Volumenstrom gemessen wird.

Wenn ein Bezugsrelais ausgewählt ist, wird die Volumenstromüberwachung aktiv, wenn das zugewiesene Relais eingeschaltet ist. Im Fehlerfall wird das gesamte solare System gesperrt. Die Fehlermeldung erscheint sowohl im Menü **Status/Meldungen** als auch im Menü

Status/Anlage/Vol.stromüberw. Sie kann nur im Menü Status/Anlage/Vol.stromüberw. quittiert werden.

Heizung 🚽 🚽
🕨 Gem . Relais
Heizkreise
Wahlfunktionen
Heizung 📩
Wahlfunktionen
Estrich-Trocknung
🕨 zurück

Heizung / G	em. Relais 😽
Anf. 1	Aktiviert
Anf. 1	>>
Anf. 2	Deaktiviert

Anforderung 1	+
🕨 🛛 Relais	
Relais	>>
⊠0-10 V	

In diesem Menü können alle Einstellungen für den Heizungsteil der Anlage bzw. die Heizkreise gemacht werden.

9.1 GEMEINSAME RELAIS

Unter diesem Menüpunkt können Einstellungen für Wärmeerzeuger gemacht werden, die für mehrere Heizkreise und deren Wahlfunktionen gemeinsam genutzt werden.

Gemeinsame Relais stehen in den Heizkreisen und in den Wahlfunktionen des Heizungsmenüs als Auswahlmöglichkeit unter **Virtuell** in der Relaisauswahl zur Verfügung. So können mehrere Heizkreise und Wahlfunktionen (Heizung) dieselbe Wärmequelle anfordern.

Damit die gemeinsamen Relais in den Heizkreisen und Wahlfunktionen zur Verfügung stehen, die Aktivierung und Einstellung der gemeinsamen Relais als Erstes vornehmen.

Heizung/Gem. Relais

Einstellkanal Bedeutung r		Einstellbe- reich/Auswahl	Werkseinstellung	
Anf. 1 (2)	nf. 1 (2) Anforderung 1 (2)		Deaktiviert	
Relais	Option Relais	Ja, Nein	Nein	
Relais	Untermenü Relais	-	-	
Relais	Auswahl Relais	systemabhängig	systemabhängig	
Kesselsch. min	Option Kesselschutz min	Ja, Nein	Nein	
TMin	Kesselmindesttemperatur	1090°C	55°C	
Kesselsch. max	Option Kesselschutz max	Ja, Nein	Nein	
ТМах	Kesselmaximaltemperatur	2095°C	90 °C	
Sen. Kessel	Auswahl Kesselsensor	systemabhängig	S4	
0-10 V	Option 0-10 Volt	Ja, Nein	Nein	
0-10 V	Untermenü 0-10 Volt	-	-	
Ausgang	Auswahl Ausgang	-, A, B, C, D	-	
TSoll 1	Untere Kesseltemperatur	1085°C	10°C	
Volt 1	Untere Spannung	1,010,0 V	1,0 V	
TSoll 2	Obere Kesseltemperatur	1590°C	80°C	
Volt 2	Obere Spannung	1,010,0 V	8,0 V	
Dauerspan- nung	Option Dauerspannung	Ja, Nein	Nein	
Volt	Wert der Dauerspannung	0,1 9,9 V	2,0 V	
TMin	Minimalwert Kesselsolltemperatur	1089°C	10°C	
ТМах	Maximalwert Kesselsolltemperatur	1190°C	80°C	
∆TVorlauf	Erhöhung für Vorlaufsoll	020K	5K	
Sen. Vorlauf	Option Vorlaufsensor	Ja, Nein	Nein	
Sensor	Zuweisung Vorlaufsensor	systemabhängig	S4	
Intervall	Überwachungsintervall	10600 s	30 s	
Hysterese	Hysterese für Korrektur	0,520,0K	1,0K	
Korrektur	Korrektur für Spannungssignal	0,01,0 V	0,1 V	
Mindestlaufz.	Option Mindestlaufzeit	Ja, Nein	Nein	
tMin	Mindestlaufzeit	0120 min	10 min	

Einstellkanal Bedeutung		Einstellbe- reich/Auswahl	Werkseinstellung
Handbetrieb	Betriebsmodus für gemeinsame Relais	Max., Auto, Aus, Min.	Auto
Pumpe 1 (2)	Option gemeinsames Relais für Ladepumpe	Aktiviert, Deak- tiviert	Deaktiviert
Pumpe 1 (2)	Untermenü Pumpe	-	-
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Verzögerung	Pumpenverzögerung	Nein, Zeit, Temp.	Nein
TEin	Kesselanlauftemperatur	1090 °C	60 °C
Dauer	Verzögerung gegenüber der Anforderung	0300 s	60 s
Nachlauf	Pumpennachlauf	Nein, Zeit, Temp.	Nein
TAUS	Kesselresttemperatur	1090 °C	50 °C
Dauer	Verzögerung gegenüber der Anforderung	0300 s	60 s
Sen. Kessel	Auswahl Kesselsensor	systemabhängig	systemabhängig
Handbetrieb	Handbetrieb Ausgang	Max., Auto, Min., Aus	Auto
Ventil 1 (2)	Option gemeinsames Relais für Ventil	Aktiviert, Deak- tiviert	Deaktiviert
Ventil 1 (2)	Untermenü Ventil	-	-
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Handbetrieb	Handbetrieb Ausgang	Max., Auto, Min.,	Auto

zurück

Jede Anforderung kann mit einem Relais und/oder einem 0-10-V-Ausgang durchgeführt werden. Werden sowohl die Option **Relais** als auch die Option **0-10 V** aktiviert, nutzt die Anforderung beide Ausgänge parallel.

Beispiel:

Dem gemeinsamen Relais **Anf. 1** kann z. B. das potenzialfreie Relais R7 zugewiesen werden. R7 steht dann den Heizkreisen und z. B. einer Brauchwassererwärmung für eine potenzialfreie Kesselanforderung zur Verfügung.

Option Relais

Wenn die Option **Relais** aktiviert wird, erscheint das Untermenü **Relais** und der Anforderung kann ein Relais zugewiesen werden.

Die Option **Kesselsch. min** dient dazu, einen Kessel vor dem Auskühlen zu schützen. Wenn die eingestellte Mindesttemperatur unterschritten wird, schaltet das zugewiesene Relais ein, bis die Mindesttemperatur wieder um 5 K überschritten wird.

Die Option **Kesselsch. max** dient dazu, einen Kessel vor dem Überhitzen zu schützen. Wenn die eingestellte Maximaltemperatur überschritten wird, schaltet das zugewiesene Relais aus, bis die Maximaltemperatur um 5K unterschritten wird.

Dazu ist die Zuweisung eines Kesselsensors erforderlich.

Option 0-10 V

Wenn die Option **0-10 V** aktiviert wird, erscheint das Untermenü **0-10 V** und der Anforderung kann ein 0-10-V-Ausgang zugewiesen werden.

Der Regler kann mit dieser Option Wärmeerzeuger mit einer 0-10-V-Schnittstelle modulierend anfordern.

Die Kennlinie für das 0-10-V-Signal in Abhängigkeit von der Kesselsolltemperatur wird nach Vorgabe des Kesselherstellers durch 2 Punkte festgelegt. Bei Temperatur **TSoll 1** beträgt das Spannungssignal für den Wärmeerzeuger **Volt 1**. Bei Temperatur **TSoll 2** beträgt das Spannungssignal für den Wärmeerzeuger **Volt 2**. Der Regler berechnet die daraus resultierende Kennlinie automatisch. Wenn die Option **Dauerspannung** aktiviert wird, erscheint der Parameter **Volt**, mit dem eine Mindestspannung eingestellt werden kann, die dauerhaft am Ausgang anliegt.

Mit den Einstellkanälen **TMax** und **TMin** können die Maximal- und Minimalwerte für die Kesselsolltemperatur eingestellt werden.

Wenn die Option **Sen. Vorlauf** aktiviert wird, prüft der Regler, ob die errechnete Solltemperatur im Wärmeerzeuger erreicht wird und passt das Spannungssignal gegebenenfalls an. Dazu wird nach Ablauf des Intervalls die Temperatur am Sensor im Kesselvorlauf überprüft. Weicht die gemessene Temperatur um mehr als die Hysterese von der Kesselsolltemperatur ab, wird das Spannungssignal um den Wert **Korrektur** angepasst. Dieser Vorgang wiederholt sich, bis die gemessene Temperatur der Kesselsolltemperatur entspricht.

Wenn die Option **Mindestlaufz.** aktiviert wird, kann eine Mindestlaufzeit für die Anforderung eingestellt werden.

Pumpe

Für Ladepumpen stehen die gemeinsamen Relais **Pumpe 1** und **Pumpe 2** zur Verfügung. Für die gemeinsamen Relais sind die Optionen **Verzögerung** und **Nachlauf** in Bezug auf eine Anforderung aktivierbar, die zeit- oder temperaturgesteuert sein können. Für die temperaturabhängige Ansteuerung ist die Zuweisung eines Kesselsensors erforderlich.

Die Option **Verzögerung** dient dazu, die Ladepumpe verzögert zu einer Anforderung einzuschalten. Wenn die eingestellte Mindesttemperatur am zugewiesen Sensor überschritten oder die eingestellte Dauer abgelaufen ist, schaltet der zugewiesene Ausgang ein. Die Option **Nachlauf** dient dazu, die Ladepumpe nach dem Ausschalten einer Anforderung verzögert auszuschalten. Wenn die eingestellte Kesselresttemperatur unterschritten oder die eingestellte Dauer abgelaufen ist, schaltet der zugewiesene Ausgang aus.

Ventil

Für Ventile bzw. Parallelrelais stehen die gemeinsamen Relais **Ventil 1** und **Ventil 2** zur Verfügung. Diese gemeinsamen Relais schalten allein oder mit einem Bezugsrelais zusammen, z. B. einer (Lade-)Pumpe.

HINWEIS:

Wenn die 0-10 V-Anforderung für die Brauchwassererwärmung verwendet wird, entspricht das Spannungssignal immer dem Wert **TMax**.

9.2 HEIZKREISE

Der Regler verfügt über 2 gemischte witterungsgeführte Heizkreise und kann mit den entsprechenden Erweiterungsmodulen bis zu 3 weitere gemischte Heizkreise ansteuern.

Werden ein oder mehrere externe Erweiterungsmodule angeschlossen, müssen sie im Regler angemeldet werden. Nur angemeldete Module erscheinen bei der Heizkreisauswahl.

Wird **neuer Heizkreis...** erstmalig angewählt, wird der erste Heizkreis dem Regler zugewiesen. Im Heizkreismenü können die Relais für die Heizkreispumpe und den Heizkreismischer ausgewählt werden.

Für einen gemischten Heizkreis sind 3 Relais erforderlich.

Im Parameter **System** kann zwischen **Heizen, Kühlen** und **Heiz./Kühl.** ausgewählt werden. Wenn die gemessene Vorlauftemperatur von der Vorlaufsolltemperatur abweicht, wird der Mischer angesteuert, um die Vorlauftemperatur entsprechend anzupassen. Die Mischerlaufzeit kann mit dem Parameter **Intervall** eingestellt werden.

Untermenü Heizsystem

Im Untermenü **Heizsystem** kann ein Modus für die Heizkreisregelung ausgewählt und eingestellt werden. Es stehen 5 Modi zur Verfügung:

- Konstant
- Kennlinie
- Gerade
- Raumeinfluss
- Raum

Die errechnete Vorlaufsolltemperatur wird durch die eingestellten Werte für die Vorlaufmaximaltemperatur und Vorlaufminimaltemperatur begrenzt.

Vorlaufmaximaltemperatur ≥ Vorlaufsolltemperatur ≥ Vorlaufminimaltemperatur Mit dem Fernversteller ist eine Verschiebung der Heizkennlinie möglich (± 15K). Des Weiteren kann der Heizkreis mit Hilfe des Fernverstellers ausgeschaltet bzw. eine Schnellaufheizung eingeleitet werden.

Heizung / Heizkreise	Ŧ
Heizkreis 1	
Heizkreis 2	
🕨 neuer Heizkreis	

Heizkreis	+
🕨 System	Heizen
Heizsystem	>>
Pumpe HK	R4
Heizkreis	*
🕨 Heizsy <i>s</i> tem	>>
Pumpe HK	R2
Mischer auf	f R3

Heizsy <i>s</i> tem	-
🕨 Modus 🛛 🕴	<onstant< td=""></onstant<>
TVorlaufsoll	45 °C
TVorlmin	20 °C

Heizsystem	*
Modus	Kennlinie
Kurve	1.0
TVorlmin	20 °C

Heizkreis ausgeschaltet bedeutet, dass die Heizkreispumpe abgeschaltet und der Mischer zugefahren wird. Schnellaufheizung bedeutet, dass mit der Vorlaufmaximaltemperatur geheizt wird. Wenn der Außentemperatursensor ausfällt, wird eine Fehlermeldung generiert. Für die Dauer des Ausfalls gilt im Modus **Kennlinie** und **Gerade** die Vorlaufmaximaltemperatur -5K als Vorlaufsolltemperatur.

Mit den Einstellkanälen **TVorlmax** und **TVorlmin** können die Maximal- und Minimaltemperaturen für die Vorlaufsolltemperatur eingestellt werden.

Mit dem Modus **Konstant** wird auf eine konstante Vorlaufsolltemperatur geregelt, die mit dem Parameter **TVorlaufsoll** eingestellt werden kann.

Vorlaufsolltemperatur = TVorlaufsoll + Fernversteller + Tageskorrektur oder Nachtabsenkung

Der Regler arbeitet mit einer gemittelten Außentemperatur.

Mit dem Modus **Kennlinie** errechnet der Regler eine Vorlaufsolltemperatur anhand der Außentemperatur und der ausgewählten Heizkurve. In beiden Fällen wird darauf sowohl der Korrekturwert des Fernverstellers als auch die Tageskorrektur oder Nachtabsenkung addiert.

Vorlaufsolltemperatur = Kennlinientemperatur + Fernversteller + Tageskorrektur oder Nachtabsenkung. Heizkennlinien

Im Modus **Gerade** wird die Kennlinie für die Vorlauftemperatur in Abhängigkeit von der Außentemperatur durch 2 Punkte festgelegt. Bei Temperatur **TAussen 1** beträgt die Vorlaufsolltemperatur **TVorlauf 1**. Bei Temperatur **TAussen 2** beträgt die Vorlaufsolltemperatur **TVorlauf 2**. Der Regler berechnet die daraus resultierende Kennlinie automatisch.

Im Modus **Raumeinfl.** wird die witterungsgeführte Vorlaufsolltemperatur um eine bedarfsabhängige Raumregelung erweitert. Mit dem Parameter **Raumfaktor** kann eingestellt werden, wie stark der Raumeinfluss berücksichtigt wird.

Der Regler errechnet die Vorlaufsolltemperatur wie im Modus Kennlinie zuzüglich des Raumeinflusses: Vorlaufsolltemperatur = Solltemperatur + Fernversteller + Tageskorrektur oder Nachtabsenkung + Raumeinfluss.

Um die Abweichung der Raumtemperatur von der eingestellten Raumsolltemperatur zu berechnen, benötigt der Regler mindestens einen Raumthermostaten vom Typ Sensor. Die Einstellungen dafür können im Untermenü **Raumtherm.** gemacht werden.

Im Modus **Raum** berechnet der Regler die Vorlaufsolltemperatur nur nach der Raumtemperatur, ohne Berücksichtigung der Außentemperatur.

Tag-/Nachtkorrektur und Timer werden ausgeblendet.

Der Startwert für die Vorlaufsolltemperatur kann mit dem Parameter **TStart** festgelegt werden. Um die Abweichung der Raumtemperatur von der eingestellten Raumsolltemperatur zu berechnen, benötigt der Regler mindestens einen Raumthermostaten (siehe Seite 62). Die Einstellungen dafür können im Parameter **Raumtherm. (1...5)** gemacht werden. Dazu **Sensor** im Einstellkanal **Typ** auswählen.

Die Einstellungen aller aktivierten Raumthermostate werden berücksichtigt. Der Regler berechnet dafür den Mittelwert der gemessenen Abweichungen und korrigiert die Vorlaufsolltemperatur entsprechend.

Η	eizsy <i>s</i> tem			Ŧ
Þ	Modus		Gera	ade
	TAussen	1	20	٥C
	TVorlauf	1	20	°C
Н	eizsystem			Ŧ
•	Modus	Ra	umeii	nfl.
	Kurve			1.0

Kurve	1.0
Raumfaktor	5

Heizsystem	+
Modus	Raum
TStart	40 °C
TVorlmin	20 °C

Heizkreis	\$
🕨 🛛 Timer	
Timer	>>
Sommerbe	trieb
Timer	
	81
▶ Modus lag/	Nacht
Timer	>>
zurück	
Hoizkrois	
	• •
Sommerbet	rieb
🕨 Sommerbet	:rieb >>
□ Fernzugriff	
Sommerbetrieb	
Modue Too/	Nocht
mouus ray/	
i i ag aus	20 00
TNacht aus	<u>14 °C</u>
Heizkreis	\$
⊠ Fernzugriff	
Fernzugriff	>>
Raumtherm.	>>
Fernzugriff	
• Modus	BAS
Sen BAS	53

Modus App O Fern OBAS

zurück

Raumthermostate

□ Raumtherm. 1 □Raumtherm, 2 🗵 Raumtherm . 3

Timer

Mit dem Timer kann der Tag-/Absenkbetrieb eingestellt werden. In den Tagphasen wird die Vorlaufsolltemperatur dann um den eingestellten Wert Tagkorrektur angehoben.

Mit dem Parameter **Modus** kann zwischen folgenden Absenkmodi gewählt werden:

Tag/Nacht: Der Nachtbetrieb erfolgt mit reduzierter Vorlaufsolltemperatur (Nachtkorrektur). Tag/Aus: Der Heizkreis und die optional aktivierte Nachheizung werden während des Nachtbe-

triebs ausgeschaltet.

Mit dem Timer können die Zeitfenster für den Tagbetrieb eingestellt werden.

Sommerbetrieb

Im Sommerbetrieb wird der Heizkreis ausgeschaltet.

Für den Sommerbetrieb stehen 2 Modi zur Verfügung:

Tag: Wenn die Außentemperatur den Wert Sommertemperatur Tag überschreitet, wird der Heizkreis außer Betrieb genommen.

Tag/Nacht: Mit den Parametern Tagzeit ein und Tagzeit aus kann ein Zeitfenster für den Sommerbetrieb eingestellt werden. Wenn die Außentemperatur innerhalb des eingestellten Zeitfensters den Wert Sommertemperatur Tag überschreitet, wird der Heizkreis außer Betrieb genommen.

Außerhalb des eingestellten Zeitfensters gilt die Sommertemperatur Nacht.

Fernzugriff

Mit dem Parameter Fernzugriff können verschiedene Arten des Fernzugriffs auf den Regler aktiviert werden

HINWEIS:

Bei der Sensorauswahl stehen nur Ausgänge zur Verfügung, die zuvor im Menü Eingänge/Module als Eingang für einen Fernzugriff eingestellt worden sind. Im Kanal Sensorkonfig. können nicht verwendete und nicht angemeldete Sensoren ausgewählt werden.

Folgende Möglichkeiten für einen Fernzugriff stehen zur Verfügung:

Fernversteller: Ein Gerät, das die Vorlaufsolltemperatur durch eine Parallelverschiebung der Heizkurve beeinflusst.

→ Um einen Fernversteller zu verwenden, den Modus auf Fern einstellen.

Raumbediengerät: Ein Gerät, das sowohl einen Fernversteller als auch einen zusätzlichen Betriebsartenschalter enthält.

→ Um ein Raumbediengerät zu verwenden, den **Modus** auf **BAS** einstellen.

Der Betriebsartenschalter des Raumbediengerätes dient dazu, die Betriebsart für den Regler einzustellen. Wenn ein Raumbediengerät verwendet wird, kann die Betriebsart ausschließlich über das Raumbediengerät verändert werden. Im Statusmenü kann nur die Betriebsart Urlaub aktiviert werden.

App: Die Auswahl App ermöglicht den Fernzugriff wie bei einem Fernversteller oder einem Betriebsartenschalter über eine App.

Wenn Fern oder BAS ausgewählt wird, ist über die App ein Lesezugriff möglich.

→ Um eine App zu verwenden, den Modus auf App einstellen.

Wenn eine App verwendet wird, kann die Betriebsart sowohl im Reglermenü als auch in der App eingestellt werden.

Option Raumthermostat

Bis zu 5 Raumthermostate können in die Regelung einbezogen werden.

Jedem Raumthermostaten kann ein Sensoreingang zugewiesen werden. Überschreitet die gemessene Temperatur die eingestellte Raumsolltemperatur an allen aktivierten Raumthermostaten, wird der Heizkreis ausgeschaltet, wenn der Parameter HK aus aktiviert ist.

Es können auch handelsübliche Raumthermostate mit potenzialfreiem Ausgang genutzt werden. In diesem Fall muss im Kanal Typ die Auswahl Schalter eingestellt werden.

Raumthermost	ate 🌲
Тур	Sensor
🕨 Sensor R	TH S4
TRaumso	oll 18 °C
Raumthermost	ate 🗘
Absenku	na 5K
Ausgang	R4
RTH1 HK 1	
🕨 🛛 Relais	
Relais	R4
DPWM/0-1	 LO V
Nachheizung	+
Modus	Zone
🕨 Ausgang 👘	Anf.1
Sensor 1	S4
NH HK 1	•
Modus	Standard
	ιον
	10 V
NH HK 1 Modus Anf	IO V
NH HK 1 Modus Anf Ausgang	io V forderung Anf.1
NH HK 1 Modus Anf Ausgang Einstellwer	io V Forderung Anf.1 te >>
NH HK 1 Modus Anf Ausgang Einstellwer	LO V Forderung Anf.1 te >>
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpo	IO V Forderung Anf.1 te >> e R4
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe	IO V Forderung Anf.1 te >> e R4 t.
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe Start-Op Stopp-Op	LO V Forderung Anf.1 te >> te >> e R4 t. ot.
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe Start-Op Stopp-Op Nachheizung	LO V Forderung Anf.1 te >> e R4 t. pt.
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe Start-Op Start-Op Stopp-Op Nachheizung Stopp-Op	LO V Forderung Anf.1 te >> e R4 t. ot.
 NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpi Start-Op Stopp-Op Nachheizung Solar aus Speicher 	LO V Forderung Anf.1 te >> e R4 t. ot.
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpi Start-Op Start-Op Stopp-Op Nachheizung Solar aus Speicher Spsoll	LO V Forderung Anf.1 te >> e R4 t. ot.
NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe Start-Op Start-Op Stopp-Op Nachheizung Solar aus Speicher Spsoll Nachheizung	LO V Forderung Anf.1 te >> e R4 t. ot.
 □ PWM/0-1 NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe □ Start-Op □ Stopp-Op Nachheizung 	LO V Forderung Anf.1 te >> e R4 t. pt. 5 1
 □ PWM/0-1 NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe □ Start-Op □ Stopp-Op Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Spsoll 	LO V Forderung Anf.1 te >> e R4 t. ot. 5 1
 □ PWM/0-1 NH HK 1 Modus Anf Ausgang Einstellwer Nachheizung Ladepumpe □ Start-Op □ Stopp-Op Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Nachheizung Spsoll Nachheizung Nachheizung SFSK aus FSK Funkt. 	LO V Forderung Anf.1 te >> e R4 t. ot. 5 1 Aktiviert

Wenn die Option **Timer** aktiviert wird, erscheint eine Wochenzeitschaltuhr, mit der Zeitfenster für den Betrieb der Funktion eingestellt werden können. Außerhalb dieser Zeitfenster wird die eingestellte Raumtemperatur um den Wert **Absenkung** herabgesetzt.

Wenn der Heizkreis sich im Kühlbetrieb befindet, wird die Raumsolltemperatur um den Wert **Absenkung** erhöht.

Für Informationen zur Timereinstellung siehe Seite 12.

Jedem Raumthermostaten kann zusätzlich ein Ausgang zugewiesen werden. Der Ausgang schaltet ein, wenn die eingestellte Raumtemperatur unterschritten wird. So kann z.B. der betroffene Raum über ein Ventil vom Heizkreis abgekoppelt werden, solange die gewünschte Raumtemperatur besteht.

Nachheizung

Für die Nachheizung des Heizkreises stehen 3 Modi zur Verfügung:

Therm.: In diesem Modus wird die Vorlaufsolltemperatur mit einem Speicherreferenzsensor verglichen.

Zone: In diesem Modus wird die Vorlaufsolltemperatur mit zwei Speicherreferenzsensoren verglichen. Die Schaltbedingungen müssen an beiden Referenzsensoren erfüllt sein.

Ein/Aus: In diesem Modus wird die Nachheizung aktiviert, wenn die HK-Pumpe für den Heizbetrieb eingeschaltet wird.

Im Untermenü **Ausgang** stehen die Modi **Standard** und **Anforderung** zur Auswahl. Wenn **Standard** ausgewählt wird, kann der Ausgang eingestellt werden

Wenn **Anforderung** ausgewählt wird, muss zunächst im Menü **Heizung / Gem. Relais** eine Anforderung aktiviert und eingestellt werden. Wenn **Einstellwerte** angewählt wird, öffnet sich das Menü **Heizung / Gem. Relais / Anforderung**.

Beim Absenkmodus **Tag/Aus** (siehe Seite 62) werden der Heizkreis und die Nachheizung während des Nachtbetriebs ganz ausgeschaltet. Mit der Start-Optimierung kann die Nachheizung bereits vor dem Beginn des Tagbetriebs aktiviert werden, damit der Speicher rechtzeitig auf eine ausreichend hohe Temperatur gebracht wird. Mit der Stopp-Optimierung kann die Nachheizung bereits vor dem Beginn des Nachtbetriebs deaktiviert werden.

Wird **Solar aus** aktiviert, wird die Nachheizung unterbunden, wenn ein ausgewählter Speicher solar beladen wird.

Wenn die Option **Spsoll** aktiviert wird, findet die Nachheizunterdrückung nur statt, wenn die Speichertemperatur über der Speichersolltemperatur liegt.

Wird **FSK aus** aktiviert, wird die Nachheizung unterbunden, wenn ein ausgewählter Festbrennstoffkessel aktiv ist.

Brauchwasservorrang

Wenn der Parameter **BW-Vorrang** aktiviert wird, werden der Heizkreis ausgeschaltet und die Nachheizung unterbunden, solange eine Brauchwassererwärmung eingeschaltet ist, die unter **Heizung/Wahlfunktionen** aktiviert worden ist.

н	eı	Z	KI	re	15

• ⊠ Schornsteinfeger □ Frostschutz □ Überwärm eabf.

Überwärmeabf.	Ŧ
Sensor	S4
TEin	85 °d
TAus	_50 °d

Kühlsystem	Ŧ
Modus	Konstant
TVorlauf	20 °C
TVorlmin	10 °C
Kühlsystem	•
🕨 Modus	Gerade
TAussen 1	20 °C
TVorlauf 1	20 °C

Modus
O beides
O Ext. Schalter
🕨 🖲 Aussen
Taupunkt
O Feuchte
O Schalter
▶ ● Aus
Heizkreis 🗧

Heizkreis	Ŧ
🕨 Taupunkt 👘	Feuchte
Sensor	Gd1
Korrektur	2 K

Schornsteinfegerfunktion

Die Schornsteinfegerfunktion dient dazu, dem Schornsteinfeger alle notwendigen Messungen ohne Menübedienung zu ermöglichen.

Die Schornsteinfegerfunktion ist in allen Heizkreisen werkseitig aktiviert. Der Schornsteinfegermodus kann aktiviert werden, indem Taste 💿 für 5s gedrückt wird.

Im Schornsteinfegermodus fährt der Heizkreismischer auf, die Heizkreispumpe und der Nachheizungskontakt werden aktiviert. Der aktive Schornsteinfegermodus wird durch ein rotes Blinken des Tastenkreuzes angezeigt. Zusätzlich wird im Display **Schornsteinfeger** eingeblendet und ein Countdown von 30 min heruntergezählt.

Läuft der Countdown ab, wird der Schornsteinfegermodus automatisch deaktiviert. Wird während des Countdowns die Taste (•) erneut für länger als 5s gedrückt, so wird der Schornsteinfegermodus beendet.

Frostschutzfunktion

Die Frostschutzfunktion im Heizkreis dient dazu, einen inaktiven Heizkreis bei einem plötzlichen Temperaturabfall zu aktivieren, um ihn vor Frostschäden zu schützen.

Die Temperatur am ausgewählten Frostschutzsensor wird überwacht. Wenn die Temperatur unter die eingestellte Frostschutztemperatur fällt, wird der Heizkreis aktiviert bis die Frostschutztemperatur um 2K überschritten ist, mindestens aber für 30 min.

Option Überwärmeabfuhr

Diese Option dient dazu, überflüssige Wärme in den Heizkreis abzuführen, um die Systemtemperatur im Betriebsbereich zu halten. Wenn die Temperatur am zugewiesenen Sensor die Einschalttemperatur überschreitet, wird die Vorlaufsolltemperatur auf den eingestellten Wert geregelt. Wenn die Temperatur die Ausschalttemperatur unterschreitet, wird die Überwärmeabfuhr inaktiv.

Die Option steht nicht zur Verfügung, wenn ein Heizkreis-Modus zum Kühlen oder Kühlen und Heizen ausgewählt wird.

Kühlung

Im Untermenü **Kühlsystem** können Einstellungen zur Kühllogik gemacht werden. Für die Kühllogik stehen 2 Modi zur Auswahl:

- Gerade
- Konstant

Im Modus **Gerade** wird die Vorlaufsolltemperatur wie im Heizsystem-Modus **Gerade** berechnet.

Mit dem Modus **Konstant** wird auf eine konstante Vorlaufsolltemperatur geregelt, die mit dem Parameter **TVorlauf** eingestellt werden kann.

Für die Aktivierung der Kühlung stehen 3 Modi zur Auswahl:

- Aussen
- Externer Schalter
- beides

Im Modus **Aussen** wird die Kühlung aktiviert, wenn die Aussentemperatur Kühlung überschritten wird.

Im Modus **Ext. Schalter** wird die Kühlung über einen externen Schalter aktiviert.

Im Modus **beides** gelten beide Schaltbedingungen für die Kühlung.

Wenn die Option **Timer** aktiviert wird, kann ein Zeitfenster eingestellt werden, in dem die Kühlung aktiv ist.

Taupunkt

Die Option **Taupunkt** dient dazu, eine Kondensation zu vermeiden. Für diese Funktion stehen 3 Varianten zur Auswahl:

- Feuchte
- Schalter
- Aus

Wenn **Feuchte** ausgewählt wird, berechnet der Regler mithilfe des auswählbaren Feuchtesensors den Taupunkt.

Aus dem Taupunkt zuzüglich des einstellbaren Korrekturwertes ergibt sich die minimale Vor-

Heizkreis 🗘
🕨 🛛 Not-Aus
Feuchte 95%
Hysterese 5%
Heizkreis 🗘
Taupunkt Schalter
Sensor S3
Ausgang R4
Nachkühlung
Modus Absolut
Ausgang Anf.1
Sensor 1 S3
Nachkühlung
Sensor 1 S3
TEin 12 °C
TAus 8 °C
Nachkühlung 1
Modus Standard
🗆 Relais
□ PWM/0-10 V
Nachkühlung 1
Modus Anforderung
Ausgang Anf.1
Einstellwerte >>

lauftemperatur. Die Option Not-Aus dient dazu, die Kühlung abzuschalten, wenn die einstellbare relative Feuchte überschritten wird. Die Wiedereinschalthysterese für diese Funktion ist einstellbar. Es kann ein Ausgang ausgewählt werden, der bei einem Not-Aus aktiviert wird, um beispielsweise einen Lüfter einzuschalten.

Wenn Schalter ausgewählt wird, können ein Eingang und ein Ausgang für einen Taupunktschalter zugewiesen werden. Wenn der Taupunktschalter eine Kondensation detektiert, wird die Kühlung unterbrochen.

Wird Aus ausgewählt, wird die Option Taupunkt ausgeschaltet.

Nachkühlung

Für die Nachkühlung des Heizkreises stehen 4 Modi zur Verfügung:

Therm.: In diesem Modus wird die Vorlaufsolltemperatur mit einem Speicherreferenzsensor verglichen.

Zone: In diesem Modus wird die Vorlaufsolltemperatur mit zwei Speicherreferenzsensoren verglichen. Die Schaltbedingungen müssen an beiden Referenzsensoren erfüllt sein.

Ein/Aus: In diesem Modus wird die Nachkühlung aktiviert, wenn die HK-Pumpe für den Kühlbetrieb eingeschaltet wird.

Absolut: In diesem Modus werden eine Ein- und eine Ausschalttemperatur für einen Speicherreferenzsensor eingestellt.

Die Nachkühlung wird aktiviert, wenn die Einschalttemperatur an Sensor 1 überschritten ist. Die Nachkühlung schaltet ab, wenn die Ausschalttemperatur erreicht wird.

Im Untermenü Ausgang stehen die Modi Standard und Anforderung zur Auswahl. Wenn Standard ausgewählt wird, kann der Ausgang eingestellt werden.

Wenn Anforderung ausgewählt wird, muss zunächst im Menü Heizung / Gem. Relais eine Anforderung aktiviert und eingestellt werden. Wenn Einstellwerte angewählt wird, öffnet sich das Menü Heizung / Gem. Relais / Anforderung.

Wenn die Option Urlaub aktiviert wird, schaltet der Heizkreis in den Absenkbetrieb.

→ Um die Tage der Abwesenheit einstellen zu können, Taste () für 5 s gedrückt halten.

Energiespar.	*
🕨 Sent Rückl	auf S4
ΔTAus	4 K
Pause	15 min

Energiesparbetrieb

Diese Option dient dazu, den Energieverbrauch der Heizkreispumpe zu optimieren. Dafür ist ein zusätzlicher Sensor im Heizkreisrücklauf notwendig. Der Regler überwacht die Temperaturdifferenz zwischen Heizkreisvorlauf und Heizkreisrücklauf. Wenn die Temperaturdifferenz die Ausschalttemperaturdifferenz unterschreitet, deaktiviert der Regler die Heizkreispumpe für die eingestellte Pausenzeit. Nach Ablauf der Pausenzeit wird die Pumpe für die eingestellte Laufzeit aktiviert. Liegt die Temperaturdifferenz danach höher als die Ausschalttemperaturdifferenz, bleibt die Pumpe aktiv. Liegt die Temperaturdifferenz unter der Ausschalttemperaturdifferenz, beginnt erneut die Pausenzeit.

Heizung/Heizkreise	/ neuer Heizkreis	/Intern bzw.	Modul 12
--------------------	-------------------	--------------	----------

Finstellkanal	Bedeutung	Einstellbe-	Werkseinstel-
Linotointanai	beacturing	reich/Auswahl	lung
System	Auswahl Heizkreis-Modus	Heizen, Kühlen, Heiz./ Kühl.	Heizen
Heizsystem	Untermenü Heizsystem	-	-
Modus	Heizsystem-Betriebsmodus	Gerade, Konstant, Kenn- linie, Raum, Raumeinfl.	Kennlinie
Kurve	Heizkurve	0,33,0	1,0
Raumfaktor	Faktor für den Raumeinfluss	110	5
TVorlaufsoll	Vorlaufsolltemperatur	1090°C	45°C
TAussen 1	Untere Außentemperatur	-20+20°C	+20°C
TVorlauf 1	Untere Vorlaufsolltemperatur	2090°C	20°C
TAussen 2	Obere Außentemperatur	-20+20°C	-20°C
TVorlauf 2	Obere Vorlaufsolltemperatur	2090°C	70°C
TStart	Starttemperatur	2060°C	40°C
TVorlmin	Vorlaufminimaltemperatur	2089°C	20°C
TVorlmax	Vorlaufmaximaltemperatur	2190°C	50°C
Intervall	Mischerintervall	120 s	2 s
Pumpe HK	Ausgangsauswahl Heizkreispumpe	systemabhängig	systemabhängig
Mischer auf	Ausgangsauswahl Mischer auf	systemabhängig	systemabhängig
Mischer zu	Ausgangsauswahl Mischer zu	systemabhängig	systemabhängig
Sen. Vorlauf	Zuweisung Sensor Vorlauf	systemabhängig	systemabhängig
Sen. Aussen	Zuweisung Außentemperatursensor	systemabhängig	systemabhängig
Tagkorrektur	Korrektur im Tagbetrieb	-5+45K	ОК
Nachtkorr.	Korrektur im Nachtbetrieb	-20+30K	-5K
Timer	Timer-Funktion Absenkbetrieb	Ja, Nein	Ja
Modus	Absenkmodus	Tag/Nacht, Tag/Aus	Tag/Nacht
Timer	Untermenü Timer-Funktion		-
Sommerbetrieb	Option Sommerbetrieb	Ja, Nein	Ja
Sommerbetrieb	Untermenü Sommerbetrieb		-
Modus	Sommerbetriebsmodus	Tag/Nacht, Tag	Tag/Nacht
TTag aus	Sommertemperatur Tag	040°C	20°C
TNacht aus	Sommertemperatur Nacht	040°C	14°C
Tagzeit ein	Tagzeitfenster ein	00:0023:45	06:00
Tagzeit aus	Tagzeitfenster aus	00:0023:45	22:00
Fernzugriff	Option Fernzugriff	Ja, Nein	Nein
Fernzugriff	Untermenü Fernzugriff	-	-
Modus	Fernzugriff-Modus	BAS, Fern, App	BAS
Sen. BAS	Zuweisung Betriebsartenschalter- Eingang	alle Eingänge Typ = BAS	-
Sen. Fernv.	Zuweisung Fernversteller-Eingang	alle Eingänge Typ = Fern	-
Raumtherm.	Untermenü Raumthermostate	-	-
Raumtherm.15	Option Raumthermostat (15)	Ja, Nein	Nein
Тур	Auswahl Raumthermostat-Typ	Sensor, Schalter	Sensor
Sensor RTH	Zuweisung RTH-Eingang	systemabhängig	systemabhängig
TRaumsoll	Raumsolltemperatur	1030°C	18°C

Einstellkanal	Bedeutung	Einstellbe-	Werkseinstel-
Hysterese	Hystoroso RTH		nung 0.5K
Timor			Nein
	Absenkungswert	1 20K	5K
Διιςσαησ		systemahhängig	systemahhängig
RTH	Raumthermostat	Aktiviert Deaktiviert	
	hadminermostat	Schalter	ARTIVICIT
HK aus	Option Heizkreis aus	Ja. Nein	Ja
Nachheizung	Option Nachheizung	Ja, Nein	Nein
Nachheizung	Untermenü Nachheizung	-	-
Modus	Auswahl des Nachheizungsmodus	Therm., Zone, Ein/Aus	Therm.
Ausgang	Ausgangsauswahl	svstemabhängig	svstemabhängig
Sensor 1	Zuweisung Bezugssensor 1	systemabhängig	systemabhängig
Sensor 2	Zuweisung Bezugssensor 2	svstemabhängig	svstemabhängig
	(wenn Modus = Zone)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
ΔTEin	Einschalttemperaturdifferenz	-15,0 44,5 K	5,0K
ΔTAus	Ausschalttemperaturdifferenz	-14,545,0K	15,0 K
Ladepumpe	Ausgangsauswahl Kessel-Ladepumpe	systemabhängig	systemabhängig
Start-Opt.	Option Start-Optimierung	Ja, Nein	Nein
Zeit	Zeit Start-Optimierung	0300min	60 min
Stopp-Opt.	Option Stopp-Optimierung	Ja, Nein	Nein
Zeit	Zeit Stopp-Optimierung	0300min	60 min
Solar aus	Option Solar aus	Ja, Nein	Nein
Speicher	Zuweisung Solarspeicher	alle Solarspeicher	-
Spsoll	Option Solltemperatur	Ja, Nein	Nein
FSK aus	Option Festbrennstoffkessel aus	Ja, Nein	Nein
FSK	Zuweisung Feststoffkessel	alle Feststoffkessel	-
BW-Vorrang	Option Brauchwasservorrang	Ja, Nein	Nein
Schornsteinfeger	Option Schornsteinfeger	Ja, Nein	Ja
Frostschutz	Option Frostschutz	Ja, Nein	Nein
Sensor	Sensor Frostschutz	Vorlauf, Aussen	Vorlauf
TFrost	Frostschutztemperatur	-20+10°C (Aussen)	+2°C (Aussen)
		410°C (Vorlauf)	+5°C (Vorlauf)
TVorlaufsoll	Vorlaufsolltemperatur Frostschutz	2050°C	20°C
Überwärmeabf.	Option Überwärmeabfuhr	Ja, Nein	Nein
Überwärmeabf.	Untermenü Überwärmeabfuhr	-	-
Sensor	Zuweisung Überwärmeabfuhr-Sensor	systemabhängig	systemabhängig
TEin	Einschalttemperatur Überwärmeabfuhr	2595°C	85 °C
TAus	Ausschalttemperatur Überwärmeabfuhr	2090°C	50°C
TVorlaufsoll	Vorlaufsolltemperatur Überwärmeabfuhr	590°C	50°C
Kühlsystem	Untermenü Kühlsystem	-	-
Modus	Kühlmodus	Gerade, Konstant	Konstant
TVorlauf	Vorlauftemperatur Kühlung	525°C	20°C
TVorlmin	Vorlaufminimaltemperatur	529°C	10°C
TAussen 1	Untere Außentemperatur	1545°C	20°C
TVorlauf 1	Untere Vorlaufsolltemperatur	525°C	20°C
TAussen 2	Obere Außentemperatur	1545°C	40 °C
TVorlauf 2	Obere Vorlaufsolltemperatur	525°C	10°C
TVorlmin	Vorlaufminimaltemperatur	529°C	10°C
TVorlmax	Vorlaufmaximaltemperatur	630°C	25 °C
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Modus	Kühlmodus	Aussen, Ext. Schalter, beides	-
Sensor	Zuweisung Schaltereingang	-	-

Invertiert Option invertierte Schaltung Ja, Nein Nein	
Invertiert Option invertierte Schaltung Ja, Nein Nein	
TTag aus Außentemperatur Kühlung 2040°C 20°C	
Timer Timer-Funktion Kühlung Ja, Nein Nein	
tEin Einschaltzeit Kühlung 00:0023:45 00:00	
tAus Ausschaltzeit Kühlung 00:0023:45 00:00	
Taupunkt Option Taupunktüberwachung Feuchte, Schalter, Aus Aus	
Sensor Zuweisung Sensoreingang systemabhängig systemabhäng	gig
Korrektur Korrekturwert 010K 2K	
Not-Aus Option Not-Aus Ja, Nein Nein	
FeuchteRelative Feuchte5100%95%	
Hysterese Wiedereinschalthysterese 110% 5%	
Ausgang Ausgangsauswahl systemabhängig systemabhängi	gig
Nachkühlung Option Nachkühlung Ja, Nein Nein	
Nachkühlung Untermenü Nachkühlung	
Modus Auswahl des Nachkühlmodus Absolut, Therm., Absolut	
ZUIIE, EIII/AUS	ria
Ausgalig Ausgaligsauswalli Systemabhäarig systemabhäarig	sig i.a
Sensor I Zuweisung Bezugssensor I Systemabriangig Systemabriang	gig
Sensor 2 (wenn Modus = Zone) systemabhängig systemabhängi	gig
ΔTEin Einschalttemperaturdifferenz -44,5+15,0K -2,0K	
ΔTAus Ausschalttemperaturdifferenz -45,0+14,5K -7,0K	
TEin Einschalttemperatur -13+44 °C +12 °C	
TAusAusschalttemperatur-14+43 °C+8 °C	
Ladepumpe Ausgangsauswahl Kessel-Lade- pumpe systemabhängig systemabhäng	gig
Start-Opt. Option Start-Optimierung Ja, Nein Nein	
ZeitZeit Start-Optimierung0300 min60 min	
Stopp-Opt. Option Stopp-Optimierung Ja, Nein Nein	
ZeitZeit Stopp-Optimierung0300 min60 min	
Urlaub Heizkreis im Absenkbetrieb bei Ja, Nein Nein aktiver Urlaubsfunktion	
Energiespar. Option Energiesparbetrieb Ja, Nein Nein	
Energiespar. Untermenü Energiesparbetrieb	
Sen. Rücklauf Zuweisung Heizkreis-Rücklaufsensor systemabhängig systemabhäng	gig
ΔTAus Ausschalttemperaturdifferenz 149K 4K Energiesparbetrieb	
Pause Pausenzeit Energiesparbetrieb 060min 15min	
Laufzeit Laufzeit Energiesparbetrieb 060min 2min	
Funkt. Aktivierung/Deaktivierung des Heizkreises Aktiviert, Deaktiviert, Aktiviert	
Sensor Zuweisung Schaltereingang	

Neue Funktion

Th. Desinfektion
 BW-Erwärmung
 BW-Vorerw.

Unter diesem Menüpunkt können Wahlfunktionen für die Heizung ausgewählt und eingestellt werden.

Die Anzahl und Art der angebotenen Wahlfunktionen hängt von den bereits gemachten Einstellungen ab.

Im Untermenü **Anforderung** stehen die Modi **Standard** und **Anforderung** zur Auswahl. Wenn **Standard** ausgewählt wird, kann der Ausgang eingestellt werden.

Wenn **Anforderung** ausgewählt wird, muss zunächst im Menü **Heizung/Gem. Relais** eine Anforderung aktiviert und eingestellt werden.

Für Informationen zur Einstellung von Wahlfunktionen siehe Seite 16.

HINWEIS:

Für Informationen zur Ausgangsauswahl siehe Seite 17.

Thermische Desinfektion

Heizung/Wahlfunktionen/neue Funktion.../Th. Desinfektion

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Anforderung	Relaisauswahl Anforderung	systemabhängig	systemabhängig
Umwälzpumpe	Option Umwälzpumpe	Ja, Nein	Nein
Ausgang	Ausgangsauswahl Umwälzpumpe	systemabhängig	systemabhängig
Sensor	Zuweisung Sensor Desinfektion	systemabhängig	systemabhängig
Intervall	Überwachungsintervall	030, 123 (dd:hh)	1d 0h
Temperatur	Desinfektionstemperatur	4590°C	60 °C
Dauer	Desinfektionsdauer	0,524,0 h	1,0 h
Abbruch	Option Abbruch	Ja, Nein	Nein
Abbruch	Abbruchintervall	1,048,0 h	2,0 h
Startzeit	Option Startzeitverzögerung	Ja, Nein	Nein
Startzeit	Startzeitpunkt	00:00 23:30	20:00
Hyst. aus	Ausschalthysterese	220K	5K
Hyst. ein	Einschalthysterese	119K	2К
TD Urlaub aus	Thermische Desinfektion aus bei aktiver Urlaubsfunktion	Ja, Nein	Nein
BAS aus	Option Betriebsartenschalter aus	Ja, Nein	Nein
Sensor	Zuweisung Betriebsartenschalter- Eingang	systemabhängig	systemabhängig
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, die Legionellenbildung in Trinkwasserspeichern durch gezielte Aktivierung der Nachheizung einzudämmen.

Für die Funktion können ein Sensor und ein Ausgang, bzw. eine Anforderung zugewiesen werden. Für die thermische Desinfektion wird die Temperatur am zugewiesenen Sensor überwacht. Während des Überwachungsintervalles muss für die Desinfektionsdauer ununterbrochen die Desinfektionstemperatur überschritten sein, damit die Desinfektionsbedingungen erfüllt sind.

Das Überwachungsintervall beginnt, wenn die Temperatur am zugewiesenen Sensor unter die Desinfektionstemperatur fällt. Ist das Überwachungsintervall abgelaufen, schaltet die Anforderung die Nachheizung ein. Die Desinfektionsdauer beginnt, wenn die Desinfektionstemperatur am zugewiesenen Sensor überschritten wird.

Die thermische Desinfektion kann nur vollendet werden, wenn die Desinfektionstemperatur für die Desinfektionsdauer ununterbrochen überschritten bleibt.

Mit dem Parameter **Abbruch** wird die Zeitspanne, nach der die Nachheizung abgebrochen wird, eingestellt. Wenn die Nachheizung abgebrochen wird, erscheint eine Fehlermeldung. Die thermische Desinfektion wird abgebrochen.

Th. Desinfektion	Ŧ
Anforderung	R4
🛛 🗆 Um wälzpum pe	
Sensor	S4

Startzeitverzögerung

Wenn die Startzeitverzögerung aktiviert wird, kann ein Zeitpunkt für die thermische Desinfektion mit Startzeitverzögerung eingestellt werden. Das Einschalten der Nachheizung wird bis zu dieser Uhrzeit hinausgezögert, nachdem das Überwachungsintervall abgelaufen ist.

Endet das Überwachungsintervall zum Beispiel um 12:00 Uhr und die Startzeit wurde auf 18:00 Uhr eingestellt, wird das Bezugsrelais um 18:00 Uhr anstatt um 12:00 Uhr, also mit 6 Stunden Verzögerung eingeschaltet.

Mit der Option **TD Urlaub aus** kann die Thermische Desinfektion für eine Phase der Abwesenheit deaktiviert werden.

→ Um die Tage der Abwesenheit einstellen zu können, Taste 🗇 für 5 s gedrückt halten.

Mit der Option **BAS aus** kann die thermische Desinfektion über den Betriebsartenschalter vom Automatikmodus auf **Aus** gestellt werden.

Brauchwassererwarmung	
Heizung / Wahlfunktionen / neue Funktion	/BW-Erwärm.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Anforderung	Ausgangsauswahl Anforderung	systemabhängig	-
Modus	Modus der Anforderung	Standard, Anforde- rung	Standard
Pumpe/Ventil	Option Ladepumpe/Ventil	Ja, Nein	Nein
Ausgang	Ausgangsauswahl Ladepumpe	systemabhängig	-
Nachlaufzeit	Option Nachlauf	Ja, Nein	Nein
Dauer	Nachlaufzeit	110 min	1 min
Modus	Betriebsmodus	Zone, Therm.	Therm.
Sensor 1	Zuweisung Bezugssensor 1	systemabhängig	systemabhängig
Sensor 2	Zuweisung Bezugssensor 2 (wenn Modus = Zone)	systemabhängig	systemabhängig
TEin	Einschalttemperatur	094°C	50°C
TAus	Ausschalttemperatur	195°C	55°C
Timer	Timer-Funktion	Ja, Nein	Nein
Man. Aufheizung	Manuelle Aufheizung	Ja, Nein	Nein
Sensor	Zuweisung Schaltereingang	systemabhängig	systemabhängig
BW Urlaub aus	Brauchwassererwärmung aus bei aktiver Urlaubsfunktion	Ja, Nein	Nein
BAS aus	Option Betriebsartenschalter aus	Ja, Nein	Nein
Sensor	Zuweisung Betriebsartenschal- ter-Eingang	systemabhängig	systemabhängig
Solar aus	Option Solar aus	Ja, Nein	Nein
Speicher	Zuweisung Solarspeicher	alle Solarspeicher	-
Spsoll	Option Solltemperatur	Ja, Nein	Nein
FSK aus	Option Festbrennstoffkessel aus	Ja, Nein	Nein
FSK	Zuweisung Feststoffkessel	alle Feststoffkessel	-
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, durch Anforderung einer Nachheizung den Brauchwasserspeicher zu erwärmen.

Wenn die Option **Pumpe/Ventil** aktiviert wird, erscheint ein weiterer Einstellkanal, mit dem der Pumpe/Ventil ein Ausgang zugewiesen werden kann. Der zugewiesene Ausgang wird mit dem Anforderungsrelais ein- und ausgeschaltet.

Wenn die Option **Nachlaufzeit** aktiviert ist, bleibt das Ladepumpenrelais um die eingestellte Dauer eingeschaltet, nachdem das Anforderungsrelais ausgeschaltet wurde.

Für die Brauchwassererwärmung stehen 2 verschiedene Modi zur Verfügung:

BW-Erwärm.	+
🕨 Anforderi	ung R4
🗆 Pumpe,	Ventil
Modus	Therm.

Modus Thermisch

Das zugewiesene Anforderungsrelais wird eingeschaltet, wenn die Temperatur am zugewiesenen Sensor 1 unter die eingestellte Einschalttemperatur sinkt. Wenn die Temperatur am zugewiesenen Sensor 1 die eingestellte Ausschalttemperatur überschreitet, wird das Relais ausgeschaltet.

Modus Zone

In diesem Modus kann ein weiterer Sensor zugewiesen werden. Die Ein- und Ausschaltbedingungen müssen dann an beiden Sensoren erfüllt sein, damit der Ausgang ein-, bzw. ausgeschaltet wird.

Wenn die Option **Timer** aktiviert wird, erscheint eine Wochenzeitschaltuhr, mit der Zeitfenster für den Betrieb der Funktion eingestellt werden können.

Für Informationen zur Timereinstellung siehe Seite 12.

Mit der Option **Man. Aufheizung** kann die Brauchwassererwärmung außerhalb des eingestellten Zeitfensters einmalig über einen Schalter aktiviert werden, wenn die Ausschalttemperatur unterschritten wurde.

Mit der Option **BW Urlaub** aus kann die Brauchwassererwärmung für eine Phase der Abwesenheit deaktiviert werden.

→ Um die Tage der Abwesenheit einstellen zu können, Taste 🕤 für 5 s gedrückt halten.

Mit der Option **BAS aus** kann die Brauchwassererwärmung über den Betriebsartenschalter vom Automatikmodus auf **Aus** gestellt werden.

Wird **Solar aus** aktiviert, wird die Brauchwassererwärmung unterbunden, wenn ein ausgewählter Speicher solar beladen wird.

Wenn die Option **Spsoll** aktiviert wird, findet die Unterdrückung der Brauchwassererwärmung nur statt, wenn die Speichertemperatur über der Speichersolltemperatur liegt.

Wird **FSK aus** aktiviert, wird die Brauchwassererwärmung unterbunden, wenn ein ausgewählter Festbrennstoffkessel aktiv ist.

Brauchwasser-Vorerwärmung

Heizung/Wahlfunktionen/neue Funktion.../BW-Vorerw.

Einstellkanal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstellung
Pumpe	Ausgangsauswahl Pumpe	systemabhängig	-
Ventil	Option Ventil	Ja, Nein	Nein
Ventil	Ausgangsauswahl Ventil	systemabhängig	-
Temp.sensor	Temperatursensor	systemabhängig	-
Sen. Vol.	Volumenstromsensor	systemabhängig	-
TMax BW	BW-Maximaltemperatur	2090°C	60°C
Startdrehzahl	Startdrehzahl Brauchwasser-	20100%	50%
	Vorerwärmung		
Schrittweite	Schrittweite Drehzahlanpassung	1100%	10%
Hysterese	Hysterese Drehzahlanpassung	0,510,0K	5,0 K
Verzögerung	Verzögerungszeit	110 s	5 s
Δ T-Funktion	Aktivierung ∆T-Funktion	Ja, Nein	Nein
ΔTEin	Einschalttemperaturdifferenz	1,050,0K	5,0 K
ΔTAus	Ausschalttemperaturdifferenz	0,549,5K	3,0 K
Sen. Quelle	Zuweisung Sensor Wärmequelle	systemabhängig	-
Sen. Senke	Zuweisung Sensor Wärmesenke	systemabhängig	-
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Diese Funktion dient dazu, mit Wärme aus einem Pufferspeicher den Kaltwasserzulauf des Brauchwasserspeichers zu erwärmen.

Der Regler überwacht den Volumenstrom am ausgewählten Volumenstromsensor. Wenn ein Volumenstrom detektiert wird, wird die Pumpe mit der Startdrehzahl eingeschaltet.

BW-Vorerw.	-
▶ Pumpe	R4
□Ventil	
Temp.sensor	S4

Ζ	irkulation	+
Þ	Ausgang	R4
	Тур	Thermisch
	Sensor	S4

Wenn die Temperatur am ausgewählten Temperatursensor den eingestellten Wert für die Brauchwassermaximaltemperatur überschreitet, wird die Drehzahl um den Wert **Schrittweite** abgesenkt. Das Intervall bis zur nächsten Messung und Anpassung kann mit dem Parameter **Verzögerung** eingestellt werden.

Wenn nach Ablauf der Verzögerungszeit die Brauchwassermaximaltemperatur nicht erreicht wird, wird die Drehzahl um den Wert Schrittweite angehoben. Innerhalb der Hysterese wird keine Anpassung der Drehzahl vorgenommen.

Wird die ΔT -Funktion aktiviert, wird die Pumpe nur aktiv, wenn $\Delta TEin$ überschritten ist, und wieder ausgeschaltet, wenn $\Delta TAus$ unterschritten wird.

Wenn die Option **Ventil** aktiviert ist, wird der ausgewählte Ausgang immer aktiviert, wenn die Pumpe aktiv ist.

Zirkulation

Heizung/Wahlfunktionen/neue Funktion.../Zirkulation

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Ausgang	Ausgangsauswahl	systemabhängig	systemabhängig
Тур	Variante	Anforderung, Thermisch, Timer, Therm.+Timer, Anford.+Timer	Thermisch
Sensor	Zuweisung Sensor Zirkulation	systemabhängig	systemabhängig
TEin	Einschalttemperatur	1059°C	40°C
TAus	Ausschalttemperatur	1160°C	45°C
Timer	Timer-Funktion	Ja, Nein	Nein
Verzög.	Einschaltverzögerung bei Anforderung	03 s	Os
Laufzeit	Laufzeit Zirkulationspumpe	01:0015:00 min	03:00 min
Pausenzeit	Pausenzeit Zirkulationspum- pe	1060 min	30 min
Funkt.	Aktivierung/Deaktivierung	Aktiviert, Deaktiviert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Die **Zirkulationsfunktion** dient zur Regelung und Ansteuerung einer Zirkulationspumpe. Für die Ansteuerungslogik stehen 5 Varianten zur Verfügung:

- Thermisch
- Timer
- Thermisch + Timer
- Anforderung
- Anforderung + Timer

Thermisch

Die Temperatur am ausgewählten Sensor wird überwacht. Der zugewiesene Ausgang wird eingeschaltet, wenn die eingestellte Einschalttemperatur unterschritten wird. Wird die Ausschalttemperatur überschritten, wird der Ausgang ausgeschaltet.

Timer

Der Ausgang wird innerhalb der eingestellten Zeitfenster eingeschaltet, außerhalb wird er ausgeschaltet.

Thermisch + Timer

Der Ausgang wird eingeschaltet, wenn die Einschaltbedingungen beider oben genannter Varianten erfüllt sind.

Anforderung

Der zugewiesene Strömungsschalter wird auf Durchgang überwacht. Wird ein Durchgang am Strömungsschalter festgestellt, wird der Ausgang für die eingestellte Laufzeit eingeschaltet. Nach Ablauf der Laufzeit wird der Ausgang wieder ausgeschaltet. Während der eingestellten Pausenzeit bleibt der Ausgang ausgeschaltet, auch wenn ein Durchgang am zugewiesenen Sensor festgestellt wird.
9. HEIZUNG

Estrich-Trock	nung		Ŧ
🕨 Heizkreise	Э		1
TStart		20	°C
ТМах		30	°C
Estrich-Trock	nung		Ŧ
🕨 Phase	Auf	heiz	zen
Restzeit			
	14 c	1, 23	3 h
Estrich-Trock	nung		
Abbreche	n?	N	ein
Estrich-Trock	nung		\$
Anstieg		((2 K
Anstiegsz	eit	24	4 h
Haltezeit		!	5 c

Anforderung + Timer

Der Ausgang wird eingeschaltet, wenn die Einschaltbedingungen beider oben genannter Varianten erfüllt sind.

Wenn die Variante **Timer, Therm.+Timer** oder **Anford.+Timer** aktiviert wird, erscheint eine Wochenzeitschaltuhr, mit der Zeitfenster für den Betrieb der Funktion eingestellt werden können.

Durchfluss bis zu 5 s anliegen, bevor der Regler reagiert, bei Anschluss an einen Impuls-

HINWEIS: Wenn der Strömungsschalter an den Eingang S1...S8 angeschlossen wird, muss der

eingang 1 s.

Für Informationen zur Timereinstellung siehe Seite 12.

9.4 ESTRICH-TROCKNUNG

Heizung/Estrich-Trocknung

Einstellkanal	Bedeutung	Einstellbereich/Auswahl	Werkseinstellung
Heizkreise	Auswahl Heizkreis	Heizkreis 1 3	systemabhängig
TStart	Starttemperatur	1030°C	20°C
ТМах	Haltetemperatur	2060°C	30 °C
Anstieg	Anstiegswert	110K	2K
Anstiegszeit	Anstiegsdauer	124 h	24 h
Haltezeit	Haltezeit von TMax	120 d	5 d
Start	Aktivierung/Deaktivierung	Ja, Nein	Nein

Diese Funktion dient der zeit- und temperaturgeführten Estrich-Trocknung für auswählbare Heizkreise.

Die Heizkreise können in dem Menü **Heizung/Estrich-Trocknung** ausgewählt werden. Am Ende dieses Menüs kann die Funktion mit **Start** ausgelöst werden.

Der Regler springt in das Statusmenü der Estrich-Trocknung. Die aktuelle **Phase** wird im Display angezeigt und die **Restzeit** wird heruntergezählt (dd:hh). Während dieses Vorganges blinkt das Tastenkreuz grün.

Am Ende des Menüs erscheint statt Start der Menüpunkt **Abbrechen**. Wird Abbrechen ausgewählt, wird die Estrich-Trocknung vorzeititg beendet.

Zu Beginn der Estrich-Trocknung werden die ausgewählten Heizkreise mit der eingestellten Starttemperatur als Vorlaufsolltemperatur für die Anstiegszeit in Betrieb genommen. Danach wird die Vorlaufsolltemperatur jeweils für die Dauer der einstellbaren Anstiegszeit schrittweise um den einstellbaren Anstieg erhöht, bis die Haltetemperatur erreicht ist. Nach Ablauf der Haltezeit wird in umgekehrter Reihenfolge die Vorlaufsolltemperatur schrittweise reduziert, bis die Starttemperatur wieder erreicht ist.

Wird die Vorlaufsolltemperatur nach den ersten 24 Stunden bzw. nach den jeweiligen Anstiegszeiten nicht erreicht oder wird sie dauerhaft überschritten, wird die Estrich-Trocknung abgebrochen.

Der Heizkreis wird ausgeschaltet und eine Fehlermeldung angezeigt. Das Tastenkreuz leuchtet rot. Fehler 1: Vorlaufsensor defekt

Fehler 2: seit über 5 min ist die Vorlauftemperatur größer als die Vorlaufmaximaltemperatur + 5K
 Fehler 3: seit über 30 min ist die Vorlauftemperatur größer als die Haltetemperatur + Anstieg
 Fehler 4: seit über 2h ist die Vorlauftemperatur größer als die Vorlaufsolltemperatur + Anstieg
 Fehler 5: seit über einer Anstiegszeit ist die Vorlauftemperatur kleiner als die Vorlaufsolltemperatur - Anstieg

9. HEIZUNG

Während das Programm Estrich-Trocknung für die ausgewählten Heizkreise läuft, arbeiten die anderen Heizkreise entsprechend ihrer gewählten Betriebsart weiter.

Mit der Taste $\overline{\upsilon}$ kann jederzeit in das Status- bzw. Hauptmenü des Reglers gewechselt werden, um Einstellungen vorzunehmen.

Wenn die Estrich-Trocknung erfolgreich beendet wurde, wechseln die beteiligten Heizkreise in den Regelbetrieb entsprechend der ausgewählten Betriebsart.

Die Estrich-Trocknung wird automatisch deaktiviert. Die Schornsteinfegerfunktion wird in allen Heizkreisen wieder aktiviert.

HINWEIS:

Die Versorgung der Heizkreise durch eine Wärmequelle muss sichergestellt sein (Nachheizung).

Wenn eine SD-Karte im Regler eingeschoben ist, wird ein Estrich-Protokoll erzeugt.

10.WMZ

WMZ

neue Funktion... zurück

Neue Funktion
▶ WMZ
Impulszähler
zurück
WMZ -

🕨 Sen, Vorl.	S2
Sen. Rückl.	S4
🗆 Sen. Vol.	

Im Menü WMZ können bis zu 7 interne Wärmemengenzähler und 1 Impulszähler aktiviert und eingestellt werden.

Die Einstellung der Funktionen ist ähnlich der Einstellung von Wahlfunktionen siehe Seite 16.

Wärmemengenzähler WMZ/neue Funktion.../WMZ

Einstellbereich/Auswahl Werkseinstellung Einstellkanal Bedeutung Sen. Vorl. Zuweisung Vorlaufsensor systemabhängig systemabhängig Sen. Rückl Zuweisung Rücklaufsensor systemabhängig systemabhängig Sen. Vol. Option Volumenstromsensor Ja, Nein Nein Sen. Vol. Zuweisung Volumenstromsensystemabhängig sor Vol.str. Volumenstrom (wenn Sen. Vol. 1,0...500,0 l/min 3.0 l/min = Nein) Relais Relaisauswahl systemabhängig Propyl. Medium Wärmeträgermedium Tyfocor LS, Propyl., Ethyl.,Wasser Gehalt Glykolanteil im Medium (nur 20...70% 45% wenn Medium = Propylenglykol oder Ethylenglykol) Alternativ-Option Alternativanzeige Ja, Nein Nein anzeige Einheit Alternative Einheit Kohle, Gas, Öl, CO, CO. Faktor Umrechnungsfaktor 0,0000001...100,0000000 0,5000000 Übertrag Übertragswert (nur bei erstmaliger Konfiguration oder nach einem WMZ-Reset) Funkt. Aktiviert, Deaktiviert, Aktivierung / Deaktivierung Aktiviert Schalter Sensor Zuweisung Schaltereingang

Wenn die Option Volumenstromsensor aktiviert wird, kann ein Impulseingang oder, falls vorhanden, ein Grundfos Direct Sensor™ ausgewählt werden.

Die Grundfos Direct Sensors™ stehen nur zur Auswahl, wenn diese zuvor im Menü **Eingänge/** Module angemeldet wurden. Dort muss auch die Impulswertigkeit eingestellt werden.

Wenn die Option Volumenstromsensor deaktiviert wird, führt der Regler eine Wärmemengenbilanzierung mit einem festen Durchflusswert als Berechnungsgrundlage durch. Der Durchfluss muss bei 100% Pumpendrehzahl am Flowmeter abgelesen und im Einstellkanal **Vol.str.** eingegeben werden. Zusätzlich muss ein Relais zugewiesen werden. Die Wärmemengenbilanzierung findet statt, wenn das zugewiesene Relais eingeschaltet ist.

Im Einstellkanal **Medium** muss das Wärmeträgermedium ausgewählt werden. Wenn Propylenglykol oder Ethylenglykol ausgewählt ist, erscheint der Einstellkanal **Gehalt**, in dem der Anteil des Frostschutzmittels im Wärmeträgermedium eingestellt werden kann.

Wenn ein Wärmemengenzähler zum ersten Mal konfiguriert wird oder nachdem seine Gesamtmenge zurückgesetzt wurde, erscheint der Einstellkanal **Übertrag**. Hier kann ein früherer Wert eingetragen werden, der in die Gesamtmenge übernommen werden soll.

Wenn die Option **Alternativanzeige** aktiviert wird, rechnet der Regler die Wärmemenge in die ersparte Menge fossilen Brennstoffs (Kohle, Öl oder Gas), oder die ersparte CO₂-Emission um. Die alternativ angezeigte Einheit kann ausgewählt werden. Dazu muss ein Umrechnungsfaktor angegeben werden. Der Umrechnungsfaktor ist abhängig von der Anlage und muss individuell errechnet werden.

Impulszähler	-
🕨 Eingang	IMP
Übertrag	
Funkt.	Aktiviert

Impulszähler

WMZ/neue Funktion.../Impulszähler

Einstellka- nal	Bedeutung	Einstellbe- reich/Auswahl	Werkseinstel- lung
Eingang	Impulseingang	IMP	-
Übertrag	Übertragswert (nur bei erstmaliger Konfiguration oder nach einem Reset)	-	-
Funkt.	Aktivierung / Deaktivierung	Aktiviert, Deakti- viert, Schalter	Aktiviert
Sensor	Zuweisung Schaltereingang	-	-

Mit einem Impulszähler können die Impulse eines Gerätes mit S0-Ausgang gezählt werden, z. B. zur Bilanzierung des Ertrages einer PV-Anlage.

Unter **Eingang** muss dazu der Impusleingang des Reglers ausgewählt werden. Wenn ein Impulszähler zum ersten Mal konfiguriert wird oder nachdem seine Gesamtmenge zurückgesetzt wurde, erscheint der Einstellkanal Übertrag. Hier kann ein früherer Wert eingetragen werden, der in die Gesamtmenge übernommen werden soll.

11. GRUNDEINSTELLUNGEN

ıtsch		
Sommer/Winter		
2020		

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstellung
Sprache	Auswahl Menüsprache	Deutsch, English, Français, Italiano, Español, Nederlands, Suomi	Deutsch
Sommer/Winter	Auswahl Sommerzeit/ Winterzeit	Ja, Nein	Ja
Datum	Einstellung Datum	01.01.200131.12.2050	01.01.2020
Uhrzeit	Einstellung Uhrzeit	00:0023:59	-
TempEinh.	Temperatureinheit	°C, °F	°C
VolEinh.	Volumeneinheit	Gallonen, Liter	Liter
Druck-Einh.	Druckeinheit	psi, bar	bar
Energie-Einh.	Energieeinheit	kWh, MBTU	kWh
Blockierschutz	Untermenü Blockierschutz	-	-
Startzeit	Blockierschutz-Startzeit	00:0023:59	12:00
Laufzeit	Blockierschutz-Laufzeit	130 s	10 s
Reset	zurück auf Werkseinstellung	Ja, Nein	Nein
Schema	Schemaauswahl	00009999	0000

Im Menü **Grundeinstellungen** können alle Basis-Parameter für den Regler eingestellt werden. Normalerweise sind diese Einstellungen bereits im Inbetriebnahmemenü gemacht worden. Sie können hier nachträglich verändert werden.

SD-Karte	-	
🕨 Restzeit	13 d	
Optionen		
Karte entfernen		

Einstellkanal	Bedeutung	Einstellbereich/Auswahl	Werkseinstellung
Karte entfernen	Karte sicher entfernen	-	-
Einst. speichern	Einstellungen speichern	-	-
Einst. laden	Einstellungen laden	-	-
Logintervall	Logintervall	00:01 20:00 (mm:ss)	01:00
Aufz.art	Aufzeichnungsart	Zyklisch, Linear	Linear

Der Regler verfügt über einen SD-Karteneinschub für handelsübliche SD-Karten. Folgende Funktionen können mit einer SD-Karte ausgeführt werden:

- Mess- und Bilanzwerte aufzeichnen. Nach der Übertragung in einen Computer können die gespeicherten Werte beispielsweise mit einem Tabellenkalkulationsprogramm geöffnet und visualisiert werden.
- Einstellungen und Parametrisierungen auf der SD-Karte sichern und gegebenenfalls wiederherstellen.
- Firmware-Updates auf den Regler aufspielen.

Die verwendete SD-Karte muss in FAT32 formatiert sein.

Firmware-Updates aufspielen

Wenn eine SD-Karte eingelegt wird, auf der ein Firmware-Update gespeichert ist, erscheint die Abfrage **Update?** im Display.

→ Um ein Update durchzuführen, Ja auswählen und mit Taste 💿 bestätigen.

Das Update wird automatisch durchgeführt. Im Display erscheint **Bitte warten...** und ein Fortschrittsbalken. Wenn das Update fertig aufgespielt ist, startet der Regler automatisch neu und durchläuft eine kurze Initialisierungsphase.

HINWEIS:

Die Karte erst entfernen, wenn die Initialisierungsphase abgeschlossen und das Hauptmenü des Reglers wieder zu sehen ist!

→ Wenn kein Update durchgeführt werden soll, Nein auswählen.

Der Regler startet den Normalbetrieb.

HINWEIS:

Der Regler erkennt Firmware-Updates nur, wenn sie in einem Ordner namens **COSMO**\ **MULTI3** auf der ersten Ebene der SD-Karte gespeichert sind.

→ Auf der SD-Karte einen Ordner COSMO anlegen und die heruntergeladene ZIP-Datei in diesen Ordner extrahieren.

Aufzeichnung starten

- 1. SD-Karte in den Einschub einsetzen.
- 2. Aufzeichnungsart und Aufzeichnungsintervall einstellen.

Die Aufzeichnung beginnt sofort.

Aufzeichnung beenden

- 1. Menüpunkt Karte entfernen... wählen.
- 2. Nach Anzeige Karte entnehmen die Karte aus dem Einschub entnehmen.

Wenn im Menüpunkt **Aufz.art Linear** eingestellt wird, endet die Aufzeichnung bei Erreichen der Kapazitätsgrenze. Es erscheint die Meldung **Karte voll**.

Bei der Einstellung **Zyklisch** werden die ältesten Daten auf der Karte überschrieben, sobald die Kapazitätsgrenze erreicht ist.

12.SD-KARTE

HINWEIS: i

Die verbleibende Aufzeichnungszeit verringert sich nicht-linear durch die zunehmende Größe der Datenpakete. Die Datenpakete können sich z. B. durch den ansteigenden Wert der Betriebsstunden vergrößern.

Reglereinstellungen speichern

→ Um die Reglereinstellungen auf der SD-Karte zu speichern, den Menüpunkt Einst. speichern auswählen.

Während des Speichervorgangs erscheint im Display Bitte warten..., danach die Meldung Erfolgreich!. Die Reglereinstellungen werden in einer .SET-Datei auf der SD-Karte gespeichert.

Reglereinstellungen laden

1. Um die Reglereinstellungen von einer SD-Karte zu laden, den Menüpunkt Einst. laden auswählen.

Das Fenster Dateiauswahl erscheint.

2. Die gewünschte .SET-Datei auswählen.

Während des Ladevorgangs erscheint im Display Bitte warten..., danach die Meldung Erfolgreich!.

HINWEIS: i Der Regler erkennt .SET-Dateien nur, wenn sie in einem Ordner namens COSMO\MULTI3

auf der ersten Ebene der SD-Karte gespeichert sind. i

HINWEIS:

Um die SD-Karte sicher zu entfernen, vor der Kartenentnahme immer den Menüpunkt Karte entfernen... anwählen.

13. HANDBETRIEB

+		
Alle Ausgänge		
Regler		
Auto		

Relais 1

OEin

Auto

O Aus

Handbetriet)
-------------	---

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstel- lung
Alle Ausgänge	Auswahl Betriebsmodus aller Ausgänge	Auto, Aus	Aus
Relais 1X	Betriebsmodus Relais	Ein, Auto, Aus	Auto
Ausgang AB	Betriebsmodus Signalausgang	Ein, Max., Auto, Min., Aus	Auto
Anforderung 1 (2)	Betriebsmodus Anforderung	Max., Auto, Min., Aus	Auto
Pumpe 1 (2)	Betriebsmodus Pumpe	Max., Auto, Min., Aus	Auto
Ventil 1 (2)	Betriebsmodus Ventil	Max., Auto, Min., Aus	Auto

Im Menü **Handbetrieb** kann der Betriebsmodus aller Ausgänge im Regler und in angeschlossenen Modulen eingestellt werden.

Unter dem Menüpunkt **Alle Ausgänge...** können alle Ausgänge gleichzeitig ausgeschaltet (Aus) oder in den Automatikmodus (Auto) gesetzt werden:

- Aus = Ausgang ist ausgeschaltet (Handbetrieb)
- Auto = Ausgang ist im Automatikmodus

Für jeden Ausgang kann auch einzeln ein Betriebsmodus gewählt werden. Folgende Einstellmöglichkeiten stehen zur Verfügung:

- Aus = Ausgang ist ausgeschaltet (Handbetrieb)
- Ein = Ausgang läuft mit 100% (Handbetrieb)
- Auto = Ausgang ist im Automatikmodus
- Min. = Ausgang läuft mit Minimaldrehzahl (Handbetrieb)
- Max. = Ausgang läuft mit Maximaldrehzahl (Handbetrieb)

HINWEIS:

Nach Ausführen der Kontroll- und Servicearbeiten muss der Betriebsmodus wieder auf **Auto** gestellt werden. Im Handbetrieb ist die Regelungslogik außer Kraft gesetzt.

14. BEDIENERCODE

Bedienercode:

0000

Im Menü **Bedienercode** kann ein Bedienercode eingegeben werden. Jede Stelle des vierstelligen Codes muss einzeln eingegeben und bestätigt werden. Nach der Bestätigung der letzten Stelle erfolgt ein automatischer Sprung in die nächsthöhere Menüebene.

Um Zugang zu den Menübereichen der Installateur-Ebene zu erlangen, muss der Installateur-Bedienercode eingegeben werden:

Installateur: 0262

Um zu verhindern, dass zentrale Einstellwerte des Reglers unsachgemäß verändert werden, sollte vor der Überlassung an einen fachfremden Anlagenbetreiber der Kunden-Bedienercode eingegeben werden.

Kunde: 0000

15. EINGÄNGE / MODULE

E	ingänge/Module
Þ	Module
	Eingänge
	zurück
M	Iodule ,
Þ	🗵 Modul 1
	🗆 Modul 2
	🗆 Modul 3

Eingänge

S1

S2

-15.0

Im Menü **Eingänge/Module** können externe Module an- und abgemeldet, und Sensoroffsets eingestellt werden.

15.1 MODULE

In diesem Untermenü können bis zu 3 externe Module angemeldet werden. Alle angeschlossenen und vom Regler erkannten Module stehen zur Auswahl.

→ Um ein Modul anzumelden, die entsprechende Menüzeile mit Taste (3) anwählen.

Die Checkbox zeigt die Auswahl an. Wenn ein Modul angemeldet ist, stehen seine Sensoreingänge und Relaisausgänge in den entsprechenden Menüs des Reglers zur Auswahl.

Eingänge/Module/Module

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werkseinstel- lung
Modul 13	Anmeldung externer Module	-	-

15.2 EINGÄNGE

In diesem Untermenü kann für jeden Sensoreingang eingestellt werden, welcher Sensortyp angeschlossen ist. Zur Auswahl stehen:

- S1...S10: Schalter, Fern (Fernversteller), BAS (Betriebsartenschalter), Pt1000, Pt500, KTY, Keine
- IMP: nicht einstellbar
- Ga1, Ga2: RH, RPS,VFS,Keine

CHTUNG	ANLAGENSCHADEN!
.N	Die Auswahl eines falschen Sensortyps führt zu unerwünschtem Regelverhalten.
pH)	Im schlimmsten Fall kann dies zu Anlagenschäden führen!
\Box	 Sicherstellen, dass der richtige Sensortyp ausgewählt ist!

Wenn **KTY**, **Pt500** oder **Pt1000** ausgewählt wurde, erscheint der Kanal **Offset**, in dem ein individueller Sensoroffset eingestellt werden kann.

- 1. Um den Offset für einen Sensor einzustellen, die entsprechende Menüzeile mit Taste 💿 anwählen.
- 2. Um den Offset für einen Sensor festzulegen, den Wert mit den Tasten 🕑 und < einstellen und mit Taste 🕟 bestätigen.

A

HINWEIS:

Wenn ein Sensor als Temperatursensor einer Funktion zugewiesen wurde, stehen die Sensortypen **Schalter, Fern, BAS, Impuls** und **Keine** für den entsprechenden Eingang nicht mehr zur Verfügung.

ACHTUNG GERÄTESCHADEN!

Sensoreingänge, die auf den Sensortyp Schalter eingestellt werden, sind nur für den Anschluss von potenzialfreien Schaltern geeignet! → Sicherstellen, dass keine Spannung angelegt wird!

Wenn **Schalter** ausgewählt wurde, erscheint die Option **Invertiert**, mit dem die Auswirkung des Schalters invertiert werden kann.

HINWEIS:

Wenn Grundfos Direct Sensors™ verwendet werden, den Sensor-Masse-Sammelklemmenblock mit PE verbinden (siehe Seite 7).

Offset		
、 、	0.Q K	

🛦 = 0.0

15. d

Regler

15. EINGÄNGE/MODULE

Eingänge/Module/Eingänge

Einstellkanal	Bedeutung	Einstellbereich/Aus- wahl	Werksein- stellung
S1S10	Auswahl Sensoreingang	-	-
Тур	Auswahl des Sensortyps	Schalter, Fern, BAS, KTY, Pt500, Pt1000, Keine	Pt1000
Offset	Sensoroffset	-15,0+15,0K	0,0K
IMP	Auswahl Impulseingang	-	-
Тур	Auswahl des Sensortyps	Impuls, Schalter, Fern, BAS, KTY, Pt500, Pt1000, Keine	Impuls
Invertiert	Schalterinvertierung (nur wenn Typ = Schalter)	Ja, Nein	Nein
Vol./Imp.	Impulsrate	0,1100,0	1,0
Offset	Offset löschen	Ja, Nein	Nein
Ga1, 2	Analoger Grundfos Direct Sensor™ 1, 2	-	-
Тур	Grundfos-Direct-Sensor™-Typ	RPS, VFS, RH, Keine	Keine
Max.	Maximaler Druck (bei Typ = RPS)	0,0 16,0 bar	6 bar
Min.	Minimaler Volumenstrom (bei Typ = VFS)	1399 l/min	2 l/min
Max.	Maximaler Volumenstrom (bei Typ = VFS)	2400 l/min	40 l/min
Offset	Sensoroffset	-15,0+15,0K	0,0 K
FR1	Frequenzeingang	-	-
Тур	Auswahl des Sensortyps	DN20, DN25, DN32, VTY20MA, Keine	Keine

15.3 RC

Das Untermenü **RC** ist zurzeit außer Funktion.

Sicherung

Tritt eine Störung ein, wird über das Display des Reglers eine Meldung angezeigt.

WARNUNG GEFAHR DURCH ELEKTRISCHEN SCHLAG!

Bei geöffnetem Gehäuse liegen stromführende Bauteile frei!
 → Vor jedem Öffnen des Gehäuses das Gerät allpolig von der Netzspannung

trennen!

Der Regler ist mit einer Sicherung geschützt. Nach Abnahme des Gehäusedeckels wird der Sicherungshalter zugänglich, der auch die Ersatzsicherung enthält. Zum Austausch der Sicherung den Sicherungshalter nach vorne aus dem Sockel ziehen.

Tastenkreuz blinkt rot.

Sensordefekt. In entsprechendem Sensor-Anzeigekanal wird anstatt einer Temperatur die Meldung **!Sensorfehler** angezeigt.

Kurzschluss oder Leitungsbruch.

Abgeklemmte Temperatursensoren können mit einem Widerstands-Messgerät überprüft werden und haben bei den entsprechenden Temperaturen die untenstehenden Widerstandswerte.

V										
°C	°F	Ω	Ω	Ω		°C	°F	Ω	Ω	Ω
		Pt500	Pt1000	KTY				Pt500	Pt1000	KTY
-10	14	481	961	1499		55	131	607	1213	2502
-5	23	490	980	1565		60	140	616	1232	2592
0	32	500	1000	1633		65	149	626	1252	2684
5	41	510	1019	1702		70	158	636	1271	2778
10	50	520	1039	1774		75	167	645	1290	2874
15	59	529	1058	1847		80	176	655	1309	2971
20	68	539	1078	1922		85	185	664	1328	3071
25	77	549	1097	2000		90	194	634	1347	3172
30	86	559	1117	2079		95	203	683	1366	3275
35	95	568	1136	2159		100	212	693	1385	3380
40	104	578	1155	2242		105	221	702	1404	3484
45	113	588	1175	2327		110	230	712	1423	3590
50	122	597	1194	2413		115	239	721	1442	3695

Display ist dauerhaft erloschen.

Zirkulationspumpe abschalten und Absperrventile für 1 Nacht absperren: Speicherverluste	Pumpen des Nachheizkreises
werden geringer?	auf nächtlichen Lauf und defek-
(ja nein	ten Rückflussverhinderer prüfen;
Rückflussverhinderer in der	Problem behoben?
Warmwasserzirkulation kontrol-	Weitere Pumpen, die mit dem
lieren - o.k.	Solarspeicher in Verbindung
	stehen, ebenso überprüfen
	- Reinigen bzw. austauschen
Die Schwerkraftzirkulation in der Zirkulationsleitung ist zu stark; stärkeren Rückflussverhinderer einsetzen oder elektr. 2-Wege-	Ventil hinter Zirkulationspumpe einbauen; das 2-Wege-Ventil ist bei Pumpenbetrieb offen, sonst geschlossen; Pumpe und 2-Wege-Ventil elektrisch parallel schalten; Zirkulation wieder in Betrieb nehmen. Drehzahlreg- lung muss deaktiviert werden!

17. INDEX

Symbole

0-10-V-Kesselansteuerung	
Α	
Δbsenkmodi	63
Anmeldung externer Module	
Арр	62
Ausgangsauswahl	17
В	
Bedienercode	
Bereitschaftsfunktion	
Betriebsmodus Ausgänge	20 ۸۱
Bothobothoddo, / dogango	
C	
Countdown	
D	
b	
Datenaufzeichnung	78
E	
Elektrischer Anschluss	6
Estrich-Trocknung	
F	
Fehlermeldungen	.34
Fehlermeldungen auittieren	
Fernversteller	
Fernzugriff, Heizkreis	62
Frostschutzfunktion	
Funktionsblock	54
G	
Comoincomo Poloic	EQ
Genieliisane Reidis	
н	
Heizkreismischer	60
Heizkreispumpe	
Heizkurve	61
HE-Pumpe	7
1	
Inbetriebnanmemenu	
К	
Kesselansteuerung	
Kollektorkühlung, Bereitschaftsfunktion	
Kollektorminimalbegrenzung	
Kollektornotabschaltung	
Kollektornottemperatur	
KUHISYSLEHI	64
Μ	

Mischerlaufzeit	60
Modulierende Heizungsregelung	59
Montage	5

17. INDEX

M	

Nachheizung, Heizkreis Nachkühlung, Heizkreis Nachtabsenkung Nachtbetrieb	
0	
Offset	82
Ρ	
Pendelladung	

R

Raumbediengerät	
Raumregelung, Heizkreis	
Reglereinstellungen laden	
Reglereinstellungen speichern	79

S

Schornsteinfegerfunktion	64
Sensoroffset	82
Sicherung auswechseln	84
Speicherkühlung, Bereitschaftsfunktion	44
Speichermaximaltemperatur	37
Speichersolltemperatur	37
Spreizladung	38
Starttemperatur	73
Systemkühlung, Bereitschaftsfunktion	43
Sicherung auswechsein Speicherkühlung, Bereitschaftsfunktion Speichermaximaltemperatur Speichersolltemperatur Spreizladung Starttemperatur Systemkühlung, Bereitschaftsfunktion	84 44 37 37 38 73 43

т

Tagbetrieb	
Tagkorrektur	61
Tag-/Nachtbetrieb	
Taupunkt	64
Technische Daten	4
Thermische Desinfektion	69
Thermostatfunktion	55
Timer	

U

Überwärmeabfuhr	45
Urlaubsfunktion	49

v

VBus® Vorlaufmaximaltemperatur. Vorlaufminimaltemperatur. Vorlaufsolltemperatur Vorranglogik.		
VBus® Vorlaufmaximaltemperatur Vorlaufminimaltemperatur Vorlaufsolltemperatur		37
VBus® Vorlaufmaximaltemperatur Vorlaufminimaltemperatur.	tur	61
VBus®	peratur	60
VBus®	nperatur	60
		7

W

• (¹ · · · · · · · · · · · · · · · · · · ·	-	7 -
Warmemengenzanier		/ ~
		<u> </u>

18. EU-KONFORMITÄTSERKLÄRUNG

COSMO GMBH Brandstücken 31 22549 Hamburg

Für das folgend bezeichnete Produkt

COSMO Multi 3

wird hiermit bestätigt, dass es den Anforderungen entspricht, die in der Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten festgelegt sind.

Zur Beurteilung des Erzeugnisses wurden folgende Richtlinien und Normen, mit der zur Zeit des Ausstellungsdatums aktuellen Version, herangezogen:

Referenz	Titel
2014/30/EU	EMV Richtlinie
2014/35/EU	Niederspannungsrichtlinie
2011/65/EU	Rohs II
Referenz	Titel
EN 55014-1: 2012-05	Elektromagnetische Verträglichkeit - Teil 1
EN 55014-2: 2016-01	Elektromagnetische Verträglichkeit - Teil 2
EN 60335-1: 2014-11	Sicherheit elektrischer Geräte für den Hausgebrauch und ähnli- che Zwecke
EN 60730-1: 2012-10	Automatische elektrische Regel- und Steuergeräte für den Haus- gebrauch und ähnliche Anwendungen
EN 60730-2-9: 2011-07	Automatische elektrische Regel- und Steuergeräte für den Haus- gebrauch und ähnliche Anwendungen - Besondere Anforderun- gen an temperaturabhängige Regel- und Steuergeräte

19. GARANTIE, GEWÄHRLEISTUNG, NACHKAUFGARANTIE, IMPRESSUM

COSMO GmbH

Brandstücken 31 22549 Hamburg Geschäftsführer: Hermann-Josef Lüken Tel: +49 40 80030430 HRB 109633 (Amtsgericht Hamburg) info@cosmo-info.de www.cosmo-info.de

1. Ausgabe Februar 2023 Irrtümer und Änderungen vorbehalten.

Sämtliche Bild-, Produkt-, Maß- und Ausführungsangaben entsprechen dem Tag der Drucklegung.

Technische Änderungen sowie Änderungen an Farbe oder Form der abgebildeten Produkte vorbehalten.

Farbabweichungen sind auch aus drucktechnischen Gründen nicht auszuschließen. Modell- und Produktansprüche können nicht geltend gemacht werden.

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form ohne schriftliche Genehmigung der Abteilung Unternehmensund Markenkommunikation reproduziert, verarbeitet und verbreitet werden.

20. NOTIZEN

INSTALLATION AND OPERATING INSTRUCTIONS

COSMO Multi 3

1214766

SAFETY ADVICE

SAFETY ADVICE

Please pay attention to the following safety advice in order to avoid danger and damage to people and property.

Danger of electric shock:

- When carrying out works, the device must first of all be disconnected from the mains.
- It must be possible to disconnect the device from the mains at any time.
- Do not use the device if it is visibly damaged!

The device must not be used by children or persons with reduced physical, sensory or mental abilities or without any experience and knowledge. Make sure that children do not play with the device!

Only connect accessories authorised by the manufacturer to the device. Make sure that the housing is properly closed before commissioning the device.

Set the code to the customer code before handing over the controller to the customer.

INSTRUCTIONS

Attention must be paid to the valid local standards, regulations and directives!

TARGET GROUP

These instructions are exclusively addressed to authorised skilled personnel.

Only qualified electricians are allowed to carry out electrical works.

Initial commissioning must be effected by authorised skilled personnel.

Authorised skilled personnel are persons who have theoretical knowledge and experience with the installation, commissioning, operation, maintenance, etc. of electric/electronic devices and hydraulic systems and who have knowledge of relevant standards and directives.

INFORMATION ABOUT THE PRODUCT

PROPER USAGE

The system controller is designed for electronically controlling solar thermal systems and heating systems in compliance with the technical data specified in this manual.

Any use beyond this is considered improper.

Proper usage also includes compliance with the specifications given in this manual.

Improper use excludes all liability claims.

NOTE:

- Strong electromagnetic fields can impair the function of the device.
- Make sure the device as well as the system are not exposed to strong electromagnetic fields.

EU DECLARATION OF CONFORMITY

The product complies with the relevant directives and is therefore labelled with the CE mark. The Declaration of Conformity is available upon request, please contact the manufacturer.

SCOPE OF DELIVERY

The scope of delivery of this product is indicated on the packaging label.

STORAGE AND TRANSPORT

Store the product at an ambient temperature of 0 ... 40 °C and in dry interior rooms only. Transport the product in its original packaging only.

CLEANING

Clean the product with a dry cloth. Do not use aggressive cleaning fluids.

DATA SECURITY

We recommend regular backups of the data stored on the device via SD card.

DECOMMISSIONING

- 1. Disconnect the device from the power supply.
- 2. Dismount the device.

SAFETY ADVICE

DISPOSAL

Dispose of the packaging in an environmentally sound manner.

Old appliances must be disposed of by an authorised body in an environmentally sound manner. Upon request we will take back your old appliances bought from us and guarantee an environmentally sound disposal of the devices.

DESCRIPTION OF SYMBOLS

Warnings are indicated with a warning symbol!

Signal words describe the danger that may occur, when it is not avoided.

WARNING means that injury, possibly life-threatening injury, can occur.

→ It is indicated how to avoid the danger described.

ATTENTION means that damage to the appliance can occur.

→ It is indicated how to avoid the danger described.

NOTE Notes

œ

Notes are indicated with an information symbol.

- → Texts marked with an arrow indicate one single instruction step to be carried out.
- 1. Texts marked with numbers indicate several successive instruction steps to be carried out.

Subject to technical change. Errors excepted.

Contents

Safe	ety advice	94
Tec	hnical data and function overview	96
1.	Installation	97
1.1	Mounting	97
1.2	Electrical connection	98
1.3	Data communication / Bus	
1 4	Central outdoor sensor unit	100
1.4	SD card slot	100
2	Stop by stop parameterisation	101
2.	Operation and function	101
3.		102
3.1	Buttons	102
3.2	Selecting menu points and adjusting val	ues 102
3.3	Adjusting the days of absence	103
3.4	Adjusting the timer	104
3.5	Adjusting optional functions	108
3.6	Output submenu	109
3.7	Sensor configuration	112
4.	Commissioning	113
4.1	Basic systems	114
4.2	Overview of output and sensor alloca	ation115
5	Main menu	125
5.1	Menu structure	125
6	Status	126
6.1	Measured / Balance values	126
6.2	Solar	126
6.2	Arrangomont	126
6.0	Hosting	126
0.4 4 E		120
0.0		120
0.0	Nessages	107
0./	Roller	127
7.	Solidi	120
7.1	Basic setting	128
7.2		131
7.3	Function control	139
7.4	Solar expert menu	142
8.	Arrangement	143
8.1	Optional functions	143
9.	Heating	150
9.1	Shared relays	150
9.2	Heating circuits	152
9.3	Optional functions	161
9.4	Screed drying	165
10.	HQM	167
11.	Basic settings	169
12.	SD card	170
13.	Manual mode	172
14.	User code	173
15.	Inputs/Modules	174
15.1	Modules	174
15.2	2 Inputs	174
15.3	3 RC	175
16	Troubleshooting	176
17	Index	180
18	ELL Declaration of conformity	182
19	Guarantee Warranty Availability Gua	arantee
. / .	Imprint	183
	P	

TECHNICAL DATA AND FUNCTION OVERVIEW

- 7 relay outputs and 10 inputs for Pt1000, Pt500 or KTY temperature sensors
- Up to 3 extension modules via VBus® (28 sensors and 22 relays in total)
- Inputs for analogue Grundfos Direct Sensors™ as well as for FRH humidity sensors
- Integrated control of up to 4 high-efficiency pumps via PWM outputs
- Data logging, storing, easy transfer of controller adjustments prepared and firmware updates via SD card
- Cooling over the heating circuit with condensation detection
- Dew point calculation by means of the FRH humidity sensor to avoid condensation
- Simplified timer, 0-10 V boiler control and DHW preheating
- Remote access to the heating circuits with room control unit(s) or the VBus®Touch HC App
- Extended optional functions, e.g. solid fuel boiler function with mixer and target temperature control

TECHNICAL DATA

Inputs:

10 inputs for Pt500, Pt1000 or KTY temperature sensors, 1 V40 impulse input, inputs for 2 analogue Grundfos Direct Sensors™ or FRH humidity sensors, input for 1 central outdoor sensor unit

Outputs:

6 semiconductor relays,1 potential-free relay and 4 PWM / 0-10 V outputs

PWM frequency:

512 Hz

PWM voltage:

10.5 V

Switching capacity:

1 (1) A 240 V~ (semiconductor relay) 2 (1) A 24 V \rightarrow /240 V ~ (potential-free relay)

Total switching capacity:

6.3 A 240 V~

Power supply:

100-240 V~ (50-60 Hz))

Supply connection: type X attachment

Standby:

approx. 1 W

Temperature controls class:

\/III

Energy efficiency contribution: 5%

Mode of operation:

type 1.B.C.Y action **Rated impulse voltage:**

2.5 kV Data interface:

VBus[®], SD card slot **VBus® current supply:**

60 mA

Functions:

screed drying, weather-compensated heating circuit control, backup heating, DHW heating with priority logic, circulation, thermal disinfection, heat quantity measurement, optional functions such as solid fuel boiler, return preheating, etc.

Housing:

plastic, PC-ABS and PMMA

Mounting:

wall mounting, also suitable for mounting into patch panels

Indication / Display:

full graphic display, operating control LED (directional pad) and background illumination

Operation:

7 buttons

Ingress protection:

IP 20/EN 60529

Protection class:

Ambient temperature:

0 40 °C

Degree of pollution:

Relative humidity:

10...90%

Fuse: T6 3A

2

Maximum altitude:

2000 m above MSL

Dimensions:

198 x 170 x 43 mm

DIMENSIONS AND MINIMUM DISTANCES

1.1 MOUNTING

Make sure the device as well as the system are not exposed to strong electromagnetic fields.

The device must only be located in dry interior rooms.

If the device is not equipped with a mains connection cable and a plug, the device must additionally be supplied from a double pole switch with contact gap of at least 3 mm.

Please pay attention to separate routing of sensor cables and mains cables.

In order to mount the device to the wall, carry out the following steps:

- 1. Unscrew the crosshead screw from the cover and remove it along with the cover from the housing.
- 2. Mark the upper fastening point on the wall. Drill and fasten the enclosed wall plug and screw leaving the head protruding.
- 3. Hang the housing from the upper fastening point and mark the lower fastening points (centres 150 mm).
- 4. Insert lower wall plugs.
- 5. Fasten the housing to the wall with the lower fastening screws and tighten.
- 6. Carry out the electrical wiring in accordance with the terminal allocation (see page 98).
- 7. Put the cover on the housing.
- 8. Attach with the crosshead screw.

1.2 ELECTRICAL CONNECTION

WARNING!	DANGER OF ELECTRIC SHOCK!
	Upon opening the housing, live parts are exposed!
	Always disconnect the device from power supply before
	opening the housing!
ATTENTION!	ESD DAMAGE!
_N	Electrostatic discharge can lead to damage to electronic components!
per per l	→ Take care to discharge properly before touching the inside
	of the device! To do so, touch a grounded surface such as a
	radiator or tap!
NOTE:	
L Connecti	ng the device to the power supply must always be the last step of the installation!
NOTE	
1 The Spe	ed option must be set to Off when non-speed-controlled devices such as
valves ar	e connected.
NOTE	
It must b	e possible to disconnect the device from the mains at any time.
➔ Insta	Il the mains plug so that it is accessible at any time.
→ If this	s is not possible, install a switch that can be accessed.
If the ma is availab	ins cable is damaged, it must be replaced by a special connection cable which le from the manufacturer or its customer service.

Do not use the device if it is visibly damaged!

The controller is equipped with 7 relays in total to which loads such as pumps, valves, etc. can be connected:

- Relays 1 ... 6 are semiconductor relays, designed for pump speed control:
 - Conductor R1...R6 Neutral conductor N (common terminal block)
 - Protective earth conductor (=) (common terminal block)
- Relay 7 is a potential-free relay (changeover).

Normally open contact	R7-A
Normally closed contact	R7-R
Centre contact	R7-M

Depending on the product version, mains cables and sensor cables are already connected to the device. If that is not the case, please proceed as follows:

Attach flexible cables to the housing with the enclosed strain relief and the corresponding screws.

The **temperature sensors** (S1 to S10) have to be connected to the terminals S1 to S10 and GND (either polarity).

The cables carry low voltage and must not run together in a cable conduit with cables carrying a voltage higher than 50 V (please pay attention to the valid local regulations). The cable lengths depend on the cross sectional area.

Example: up to 100 m at 1.5 mm², up to 50 m at 0.75 mm². The cables can be extended with a two-wire cable.

The V40 flowmeter can be connected to the terminals IMP and GND (either polarity).

The terminals marked **PWM / 0-10 V** are control outputs for high-efficiency pumps (for connection see illustration).

Electrical connection of a high-efficiency pump (HE pump)

Speed control of a HE pump is possible via a PWM signal / 0-10 V control. The pump has to be connected to the relay (power supply) as well as to one of the PWM outputs of the controller. In the Output adjustment channel one of the PWM control types as well as a relay have to be selected (see page 109).

When Grundfos Direct Sensors[™] are used, connect the sensor ground common terminal block to PE.

Connect the **analogue Grundfos Direct Sensors™** or **FRH humidity sensors** to the Ga1 and Ga2 inputs.

The controller is supplied with power via a mains cable. The power supply of the device must be 100...240 V~ (50...60 Hz).

Connect the **mains cable** to the following terminals:

Neutral conductor N

Conductor L

Protective earth conductor 🕀 (common terminal block)

WARNING! DANGER OF ELECTRIC SHOCK!

L' is a fused contact permanently carrying voltage.

→ Always disconnect the device from power supply before opening the housing!

Conductor L' (L' is not connected with the mains cable. L' is a fused contact permanently carrying voltage.)

For more details about the commissioning procedure see page 101.

1.3 DATA COMMUNICATION / BUS

The controller is equipped with a VBus[®] for data transfer and energy supply to external modules. The connection is to be carried out at the terminals marked **VBus** (any polarity).

One or more VBus® modules can be connected via this data bus.

During remote parameterisation, the 🖄 symbol will be displayed, the controller will not carry out any control function.

1.4 CENTRAL OUTDOOR SENSOR UNIT

The controller is equipped with an input for a central outdoor sensor unit. The connection is to be carried out at the terminals marked **ZA** (any polarity).

Several controllers can use a common outdoor temperature sensor.

The central outdoor sensor unit measures the outdoor temperature and transmits this value to the controllers connected.

If a central outdoor sensor unit is used, select **ZA** in the sensor selection.

1.5 SD CARD SLOT

The controller is equipped with an SD card slot.

With an SD card, the following functions can be carried out:

- Store measurement and balance values onto the SD card. After the transfer to a computer, the values can be opened and visualised, e.g. in a spreadsheet.
- Prepare adjustments and parameterisations on a computer and transfer them via the SD card.
- Store adjustments and parameterisations on the SD card and, if necessary, retrieve them from there.

• Download firmware updates from the Internet and install them on the controller via SD card.

For more information about using an SD card, see page 170.

2. STEP-BY-STEP PARAMETERISATION

The COSMO Multi 3 is a controller that offers a broad variety of functions to the user. At the same time, the user has a lot of freedom in configurating them. Therefore, to set up a complex system, careful planning is required. We recommend drawing a sketch of the system first. If planning, hydraulic construction and electrical connection have all been carried out successfully, proceed as follows:

1. Running the commissioning menu

After the commissioning menu has been finished (see page 113), further adjustments can be made. The commissioning menu can be repeated any time by means of a reset (see page 169). Additional adjustments will be deleted.

For further information about the commissioning menu see page page 113.

2. Registering sensors

If flowmeters, flow switches, Grundfos Direct Sensors™, flow rate sensors, humidity sensors, room control units, remote controls, switches and/or external extension modules are connected, these have to be registered in the **Inputs/Modules** menu.

For further information about the registration of modules and sensors see page 174.

In some functions, the **Sensor config.** channel is available for sensor selection, in which sensors not used and not registered can be selected. The selected sensor input will automatically be set to the sensor type required for the function.

3. Activating optional functions and/or heating circuits

The basic solar system has been adjusted during commissioning. Now, optional functions and/or heating circuits can be selected, activated and adjusted.

Outputs available can be allocated to functions which require an output. The controller always suggests the numerically smallest output available.

Sensors can be allocated to more than one function.

For further information about the solar optional functions see page 131.

For further information about the optional arrangement functions see page 143.

For further information about heating circuits and optional heating functions see page 152.

3.1 **BUTTONS**

The controller is operated via the 7 buttons next to the display. They have the following functions:

Button $\widehat{()}$ - scrolling upwards

- Button 3 scrolling downwards
- Button 😥 increasing adjustment values
- Button 🕢 reducing adjustment values
- Button (5) confirming
- Button (•)- entering the status menu / chimney sweeper mode (system-dependent)
- Button ()- escape button for changing into the previous menu / to the Days of absence menu (press and hold down for 5 s, see page 103)

Operating control LED (in the directional pad)

Green:	Everything OK
Red [.]	Cancellation screed drving

Cancellation screed drying

Red flashing: Error / initialisation/chimney sweeper function active

Green flashing: Manual mode/screed drying active

3.2 SELECTING MENU POINTS AND ADJUSTING VALUES

During normal operation of the controller, the display is in the main menu. If no button is pressed for 1 min, the display illumination switches off. After 4 further minutes, the controller will display the home screen (see page 127).

Press any key to reactivate the display illumination.

- → In order to scroll through a menu or to adjust a value, press either buttons ① and ③ or buttons 2 and 4.
- ➔ To open a submenu or to confirm a value, press button ⑤.
- → To enter the status menu, press button ④ unconfirmed adjustments will not be saved.
- \rightarrow To enter the previous menu, press button (7) unconfirmed adjustments will not be saved.

If no button has been pressed within a couple of minutes, the adjustment is cancelled and the previous value is retained.

If the symbol >> is shown behind a menu item, pressing button (5) will open a new submenu. If the symbol 🗐 is shown in front of a menu item, pressing button (5) will open a new submenu. If it is already opened, a \square is shown instead of the \boxdot .

Status	+
Solar	
System	>>
Service	
Relay selec.	¢
▶ 🗆 Controller	
R1	
R2	

Values and options can be changed in different ways:

Numeric values can be adjusted by means of a slide bar. The minimum value is indicated to the left, the maximum value to the right. The large number above the slide bar indicates the current adjustment. By pressing buttons \bigcirc or the upper slide bar can be moved to the left or to the right.

Only after the adjustment has been confirmed by pressing button (s) will the number below the slide bar indicate the new value. The new value will be saved if it is confirmed by pressing button (s) again.

When 2 values are locked against each other, they will display a reduced adjustment range depending on the adjustment of the respective other value.

In this case, the active area of the slide bar is shortened, the inactive area is indicated as a dotted line. The indication of the minimum and maximum values will adapt to the reduction.

If only one item of several can be selected, they will be indicated with radio buttons. When one item has been selected, the radio button in front of it is filled.

If more than one item of several can be selected, they will be indicated with checkboxes. When an item has been selected, an \mathbf{x} appears inside the checkbox.

3.3 ADJUSTING THE DAYS OF ABSENCE

The parameter **Days of absence** can be used for entering the number of days for a holiday absence.

 \rightarrow In order to adjust the days of absence, press and hold down button \bigcirc for 5 s.

For the number of days adjusted, the following functions are deactivated or modified

in their behaviour respectively:

- Solar part of the system (see page 142)
- Heating circuits (see page 158)
- Thermal disinfection (see page 161)
- DHW heating (see page 162)

Day selection
Reset
back
Day selection
🗆 Mon-Sun
🗆 Mon-Fri
🗆 Sat-Sun
🖾 Mon
□Tue
🛛 Wed
□Thu
□Fri
🗆 Sat
⊠Sun
Continue

Mon, Wed, Sun Mon, Wed, Sun Copy from Mon, Wed, Sun Start --: --Stop --: -back Start 06:00 Stop 08:30 U

3.4 ADJUSTING THE TIMER

When the **Timer** option is activated, a timer is indicated in which time frames for the function can be adjusted.

In the **Day selection** channel, the days of the week are available individually and as frequently selected combinations.

If more than one day or combination is selected, they will be merged into one combination for the following steps.

The last menu item after the list of days is **Continue**. If **Continue** is selected, the timer menu opens, in which the time frames can be adjusted.

Adding a time frame:

In order to add a time frame, proceed as follows:

1. Select New time frame.

2. Adjust **Start** and **Stop** for the desired time frame. The time frames can be adjusted in steps of 5 min.

3. In order to save the time frame, select Save and confirm the security enquiry with Yes.

4. In order to add another time frame, repeat the previous steps.6 time frames can be adjusted per day or combination.

5. Press the left button () in order to get back to the day selection.

Copying a time frame:

In order to copy time frames already adjusted into another day / another combination, proceed as follows:

- 1. Choose the day / the combination into which the time frames are to be copied and select **Copy from**.
- A selection of days and / or combinations with time frames will appear.
- 2. Select the day or combination from which the time frames are to be copied.

Removing a time frame:

In order to delete a time frame, proceed as follows:

- 1. Select the time frame that is to be deleted.
- 2. Select **Delete** and confirm the security enquiry with **Yes**.

Resetting the timer:

In order to reset time frames adjusted for a certain day or combination, proceed as follows:

1. Select the desired day or combination.

2. Select **Reset** and confirm the security enquiry with **Yes**.

The selected day or combination will disappear from the list, all its time frames will be deleted. In order to reset the whole timer, proceed as follows:

→ Select **Reset** and confirm the security enquiry with **Yes**.

Add new function	•
Bypass	
Ext. HX	
Tube collector	

Bypass	Ŧ
Collector	1,2
Output	R4
Туре	Pump

Bypass pump 1	-
🕨 🛛 Relay	
Relay	R4
□ PWM/0-10 V	

Solar / Opt. functions → ▶ Bypass

Cooling mode Add new function

Bypass	
ΔTOff	4.0 K
Funct.	Activated
Save function	

Bypass	*
ΔTOff	4.0 K
Funct.	Activated
Delete function	

All adjustments made for the timer are deleted.

3.5 ADJUSTING OPTIONAL FUNCTIONS

In the **Opt. functions / Add new function** menus, optional functions can be selected and adjusted.

The kind and number of optional functions offered depends on the previous adjustments.

When a function is selected, a submenu opens in which all adjustments required can be made. In this submenu, an output and, if necessary, certain system components can be allocated to the function.

If an output can be allocated to the function, the **Output** submenu opens (see page 109).

When a function has been adjusted and saved, it will appear in the **Opt. functions** menu above the menu item **Add new function**.

This allows an easy overview of functions already saved.

An overview about which sensor has been allocated to which component and which output has been allocated to which function is given in the **Status** menu.

At the end of each optional function submenu, the menu items **Funct.** And **Save function** are available. In order to save a function, select **Save function** and confirm the security enquiry by selecting **Yes**.

In functions already saved, the menu item **Delete function** will appear instead.

In order to delete a function already saved, select Delete function and confirm the security enquiry by selecting Yes. The function will become available under **Add new function** again. The corresponding outputs will be available again.
3. OPERATION AND FUNCTION

Funct.			
🕨 🕲 Switch			
OActivated			
O Deactivated			
Bypass			¢
ATOH	А	0	V

Bypass	*
ΔTOff	4.0 K
Funct.	Switch
Sensor	-

With the menu item Funct., an optional function already saved can be temporarily deactivated or re-activated respectively. In this case, all adjustments will remain stored, the allocated outputs will remain occupied and cannot be allocated to another function. The allocated sensor will be monitored for faults.

By selecting Switch, the function can be activated or deactivated respectively by means of an external potential-free switch.

If Switch is selected, the channel Sensor appears, in which a sensor input can be defined as a switch.

OUTPUT SUBMENU 3.6

The **Output** submenu is available in almost all optional functions. Therefore, it will not be explained in the individual function descriptions.

In this submenu, relays and / or signal outputs can be allocated to the function selected. All adjustments required for the outputs can be made in this menu.

All controller and module (if connected) outputs available will be displayed. If - is selected, the function will run normally in the software but will not operate an output. Relay and signal outputs can be activated separately. Depending on the adjustments made, the following results are possible:

Adjustments

Result Behaviour of the relay Behaviour of the signal Behaviour of the PWM/0-10 V option Relay option Speed control Adapter option output output adapter → On/Off Yes Yes Yes Yes Modulating Modulating → Modulating Yes No Yes No Burst control • Yes On/Off Modulating Yes No Yes → On/Off Yes No No irrelevant* 0%/100% → On/Off Modulating 0%/100% Yes Yes Yes No → On/Off Yes Modulating Modulating Yes Yes Yes → On/Off 0%/100% Yes Yes No irrelevant* 0%/100% No Yes Yes irrelevant* Modulating → No Yes No irrelevant* 0%/100%

*If the relay option and/or speed control is deactivated, the adjustment in the adapter option will have no effect.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Relay	Relay option	Yes, No	No
Relay	Relay selection	system dependent	system dependent
PWM/0-10 V	PWM/0-10 V option	Yes, No	No
Output	Signal output selection	system dependent	system dependent
Signal	Signal type	PWM, 0-10 V	PWM
Profile	Curve	Solar, Heating	Solar
Speed	Speed control	Yes, No	system dependent
Min.	Minimum speed	20100%	30%
Max.	Maximum speed	20100%	100%
Adapter	Adapter option	Yes, No	No
Inverted	Inverted switching	Yes, No	No
	option		
Blocking	Blocking protection	Yes, No	No
protect.	option		
Manual mode	Operating mode	Max., Auto, Min., Off	Auto

Speed control

In the **Speed** adjustment channel, the speed control for the output can be activated or deactivated respectively. If **Yes** is selected, the channels **Min.**, **Max.** and **Adapter** will appear. In the **Min.** adjustment channel, a relative minimum speed for a pump connected can be allocated to the output

In the **Max.** adjustment channel, a relative maximum speed for a pump connected can be allocated to the output.

If the speed control signal is generated via a VBus[®] / PWM interface adapter, the **Adapter** option has to be activated. If **Yes** is selected, the relay will switch on or off (no burst control). Speed information will be transmitted via the VBus[®].

For functions controlling loads which are not speed controlled, the speed control will not be shown on the display (e.g. the bypass type valve, mixer).

If the temperature difference reaches or exceeds the switch-on temperature difference, the pump switches on at 100% speed for 10 s. Then, the speed is reduced to the minimum pump speed value. If the temperature difference exceeds the adjusted set value by 1/10 of the rise value, the pump speed increases by one step (1%). The response of the controller can be adapted via the parameter **Rise**. Each time the difference increases by 1/10 of the adjustable rise value, the pump speed increases by one step until the maximum pump speed of 100% is reached. If the temperature difference decreases by 1/10 of the adjustable rise value, pump speed will be decreased by one step.

3. OPERATION AND FUNCTION

Relay option

If the **Relay** option is activated, a relay can be allocated to the output selection.

PWM/0-10 V option

If the **PWM/0-10 V** option is activated, a PWM/0-10 V output can be allocated to the output selection.

In the **Signal** channel, a selection between a PWM and a 0-10 V signal can be made. In the **Profile** channel, characteristic curves for solar and heating pumps can be selected.

Signal characteristic: PWM; Profile: Solar

Signal characteristic: PWM; Profile: Heating

Blocking protection

In order to protect the pumps against blocking after standstill, the controller is equipped with a blocking protection option. This option can be activated in the output selection submenu. The **Blocking protection** option can be adjusted in the **Basic settings/Blocking protect.** menu (see page 169).

Manual mode

In the **Manual mode** adjustment channel, the operating mode of the output can be selected. The following options are available:

Off	=	Output is switched off (manual mode)
Min.	=	Output is active at minimum speed (manual mode)
Max.	=	Output is active at 100% (manual mode)
Auto	=	Output is in automatic mode

After service and maintenance work, the operating mode must be set back to Auto. In manual mode the control logic is suspended.

111

3. OPERATION AND FUNCTION

3.7 SENSOR CONFIGURATION

Some sensors must be registered and configured in the **Inputs/Modules** menu (see page 112 and page 175).

In some functions, the **Sensor config.** channel is available for sensor selection, in which sensors not used and not registered can be selected. The selected sensor input will automatically be set to the sensor type required for the function. Registering the sensor in the **Inputs/Modules** menu is then no longer necessary.

If a sensor is used as the temperature sensor of a function, the sensor types **Switch**, **Fern**, **BAS**, **Impulse** and **none** will not be available for the corresponding input.

112

(4)

Button navigation Adjustment mode (5)2)Changing a value Confirming a value (5) next parameter appears automatically Language Deutsch English Francais Units O °F / gal / MBTU ● °C / Liter / kWh Auto DST Yes O No Time 12:26 Date

--.-.2020 System or scheme O Scheme System

When the hydraulic system is filled and ready for operation, connect the controller to the mains. The controller runs an initialisation phase in which the directional pad glows red.

When the controller is commissioned or when it is reset, it will run a commissioning menu after the initialisation phase. The commissioning menu leads the user through the most important adjustment channels needed for operating the system.

Commissioning menu

The commissioning menu consists of the channels described in the following. In order to make an adjustment, press button (3). Adjust the value by pressing buttons (4) and (2), then push button (5) to confirm. The next channel will appear in the display.

1. Language:

➔ Adjust the desired menu language.

2. Units:

→ Adjust the desired unit system.

3. Daylight savings time adjustment:

→ Activate or deactivate the automatic daylight savings time adjustment.

4. Time:

Adjust the clock time. First of all adjust the hours, then the minutes.

5. Date:

➔ Adjust the date. First of all adjust the year, then the month and then the day.

6. Selection: System or Scheme

→ Choose whether the controller is to be configured with a scheme number or with a system and a variant.

7a. Scheme (if 6. = Scheme):

Enter the scheme number of the desired system.

7b. Selection of the solar system (if 6. = System):

Adjust the desired solar system (number of collectors and stores, hydraulic variants).

8. Completing the commissioning menu:

After the system has been selected or the scheme number has been entered, a security enquiry appears. If the security enquiry is confirmed, the adjustments will be saved.

- \rightarrow In order to confirm the security enquiry, press button (5).
- In order to reenter the commissioning menu channels, press button (7).

If the security enquiry has been confirmed, the controller will be ready for operation.

The adjustments carried out during commissioning can be changed anytime in the corresponding adjustment channel. Additional functions and options can also be activated and adjusted (see page 128).

Set the code to the customer code before handing over the controller to the customer (see page 173).

4.1 **BASIC SYSTEMS**

The controller is pre-programmed for different basic systems. The selection depends on the number of heat sources (collector fields) and heat sinks (stores, pool).

The selection of the basic solar system is one of the most important adjustments and is thus requested already in the commissioning menu.

First, the number of collector fields and stores will have to be adjusted, then the hydraulic variant.

NOTE:

A solar system with store loading in layers is implemented as a 2-store system (store top = store 1; store base = store 2).

The system selected is visualised by the corresponding number of store and collector symbols. The exemplary figure shows system 2.3.x with 2 collector fields and 2 stores.

The hydraulic variant refers to the different actuators that are to be controlled. They are visualised on the display by means of symbols, when the variant is selected. The upper symbol indicates the actuator belonging to the collector fields, the lower one the actuators belonging to the stores

The exemplary figure shows the display indicated when system 2.3.2 has been selected.

In this case, each collector field has a 2-port valve, the stores are loaded by means of pump logic.

The controller allocates corresponding output and sensor settings for each basic system. The allocations of all combinations are shown in chap. 4.2.

4.2 OVERVIEW OF OUTPUT AND SENSOR ALLOCATION

System 1.1.1

-			
Sensors		Relays; PWM	/0-10 V
Collector 1	S1	Solar pump	R1; A
Store base	S2		

System 1.2.1

Sensors		Relays; PWM/0-10 V		
Collector	S1	Solar pump	R1; A	
Store 1 base	S2	3-PV store 2	R2	
Store 2 base	S4			

System 1.2.2

Sensors		Relays; PWM/0-10	v
Collector	S1	Solar pump store 1	R1; A
Store 1 base	S2	Solar pump store 2	R2; B
Store 2 base	S4		

System 1.2.3

Sensors Relays; PWM/0-10 V		V	
Collector	S1	Solar pump	R1; A
Store 1 base	S2	2-PV store 1	R2
Store 2 base	S4	2-PV store 2	R3

1.3.1

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Solar pump	R1; A
Store 1 base	S2	2-PV store 1	R2
Store 2 base	S4	2-PV store 2	R3
Store 3 base	S5	2-PV store 3	R4

1-3-2	<u>00</u>	0	
S1			
	• S2	S4	\$5
R1; A	R2; B	R3; C	

System

System 1.3.2			
Sensors		Relays; PWM/0-10	V
Collector 1	S1	Solar pump store 1	R1; A
Store 1 base	S2	Solar pump store 2	R2; B
Store 2 base	S4	Solar pump store 3	R3; C
Store 3 base	S5		

System 1.3.3

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Solar pump	R1; A
Store 1 base	S2	3-PV store 1	R2
Store 2 base	S4	3-PV store 2	R3
Store 3 base	S5		

System	1.4.1
System	

ensors		Relays; PWM/0-10 V		
ollector 1	S1	Solar pump	R1; A	
tore 1 base	S2	2-PV store 1	R2	
tore 2 base	S4	2-PV store 2	R3	
tore 3 base	S5	2-PV store 3	R4	
tore 4 base	S6	2-PV store 4	R5	

System 1.4.2

S6

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Solar pump	R1; A
Store 1 base	S2	3-PV store 1	R2
Store 2 base	S4	3-PV store 2	R3
Store 3 base	S5	3-PV store 3	R4
Store 4 base	S6		

System 1.4.3

I

Sensors		Relays; PWM/0-10	V
Collector 1	S1	Solar pump store 1	R1; A
Store 1 base	S2	Solar pump store 2	R2; B
Store 2 base	S4	Solar pump store 3	R3; C
Store 3 base	S5	Solar pump store 4	R4; D
Store 4 base	S6		

System	
2-1- <u>1</u>	

R1; A R2; B S2

System 2.1.2					
Sensors		Relays; PWM/0-	10 V		
Collector 1	S1	2-PV collector 1	R1		
Store base	S2	2-PV collector 2	R2		
Collector 2	S6	Solar pump	R3; A		

System 2.1.1

Sensors		Relays; PWM/0-10	V
Collector 1	S1	Pump collector 1	R1; A
Store base	S2	Pump collector 2	R2; B
Collector 2	S6		

System 2.2.1

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Pump collector 1	R1; A
Store 1 base	S2	Pump collector 2	R2; B
Store 2 base	S4	3-PV store 2	R3
Collector 2	S6		

Sensors		Relays; PWM/0-1	0 V
Collector 1	S1	Pump collector 1	R1; A
Store 1 base	S2	Pump collector 2	R2; B
Store 2 base	S4	2-PV store 1	R3
Collector 2	S6	2-PV store 2	R4

•			
Sensors		Relays; PWM/0-10 V	
Collector 1	S1	2-PV collector 1	R1
Store 1 base	S2	2-PV collector 2	R2
Store 2 base	S4	Solar pump store 1	R3; A
Collector 2	S6	Solar pump store 2	R4; B

System 2-2-5 🔨 🗴

System 2.2.4

Sensors		Relays; PWM/0-10 V	
Collector 1 S	51	2-PV collector 1	R1
Store 1 base	52	2-PV collector 2	R2
Store 2 base S	54	Solar pump	R3; A
Collector 2	6	3-PV store 2	R4

System	2.2.5
--------	-------

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	2-PV collector 1	R1
Store 1 base	S2	2-PV collector 2	R2
Store 2 base	S4	Solar pump	R3; A
Collector 2	S6	2-PV store 1	R4
		2-PV store 2	R5

System 2.3.1

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Pump collector 1	R1; A
Store 1 base	S2	Pump collector 2	R2; B
Store 2 base	S4	2-PV store 1	R3
Store 3 base	S5	2-PV store 2	R4
Collector 2	S6	2-PV store 3	R5

System 2.3.2

System 2.3.3

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	Solar pump store 1	R1; A
Store 1 base	S2	Solar pump store 2	R2; B
Store 2 base	S4	Solar pump store 3	R3; C
Store 3 base	S5	2-PV collector 1	R4
Collector 2	S6	2-PV collector 2	R5

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	2-PV collector 1	R1
Store 1 base	S2	2-PV collector 2	R2
Store 2 base	S4	Solar pump	R3; A
Store 3 base	S5	2-PV store 1	R4
Collector 2	S6	2-PV store 2	R5
		2-PV store 3	R6

System	2.3.4
0,000	E.V.T

-			
Sensors		Relays; PWM/0-1	0 V
Collector 1	S1	Pump collector 1	R1; A
Store 1 base	S2	Pump collector 2	R2; B
Store 2 base	S4	3-PV store 1	R3
Store 3 base	S5	3-PV store 2	R4
Collector 2	S6		

System 2.3.5

Sensors		Relays; PWM/0-10 V	
Collector 1	S1	2-PV collector 1	R1
Store 1 base	S2	2-PV collector 2	R2
Store 2 base	S4	Solar pump	R3; A
Store 3 base	S5	3-PV store 1	R4
Collector 2	S6	3-PV store 2	R5

System 3.1.1			
Sensors		Relays; PWM/0-1	10 V
Collector 1	S1	Pump collector 1	R1; A
Store base	S2	Pump collector 2	R2; B
Collector 2	S6	Pump collector 3	R3; C
Collector 3	S8		

System 3.1.2			
Sensors		Relays; PWM/0-	10 V
Collector 1	S1	2-PV collector 1	R1
Store base	S2	2-PV collector 2	R2
Collector 2	S6	Solar pump	R3; A
Collector 3	S8	2-PV collector 3	R4

System 3.2.1

Sensors		Relays; PWM/0-1	0 V 0
Collector 1	S1	Pump collector 1	R1; A
Store 1 base	S2	Pump collector 2	R2; B
Store 2 base	S4	3-PV store 2	R3
Collector 2	S6	Pump collector 3	R4; C
Collector 3	S8		

S1

S2

Relays; PWM/0-10 V

R1; A

R2; B

R3

R5; C

R4

Pump collector 1

Pump collector 2

S4 2-PV store 1

S6 2-PV store 2

S8 Pump collector 3

System 3.2.2

Sensors

Collector 1

Store 1 base

Store 2 base

Collector 2

Collector 3

System 3.2.3			
Sensors		Relays; PWM/0-10	v
Collector 1	S1	2-PV collector 1	R1
Store 1 base	S2	2-PV collector 2	R2
Store 2 base	S4	Solar pump store 1	R3; A
Collector 2	S6	Solar pump store 2	R4; B
Collector 3	S8	2-PV collector 3	R5

System 3.2.4

Sensors	Relays; PWM/0-10 V
Collector 1 S	1 2-PV collector 1 R1
Store 1 base S2	2 2-PV collector 2 R2
Store 2 base S4	4 Solar pump R3; A
Collector 2 Se	6 3-PV store 2 R4
Collector 3 SS	8 2-PV collector 3 R5

5. MAIN MENU

Main menu

• Status Solar Arrangement

• Solar

• Arrangement

The following menus are available:

• Heating

• Status

- HQM
- Basic settings
- SD card
- Manual modeUser code
- Inputs/Modules
- 1. Select the menu area by pressing buttons 1 and 3.
- 2. Press button (5) in order to enter the menu area selected.

If no button is pressed for 1 min, the display illumination switches off. After 4 further minutes, the controller will display the home screen (see page 127).

 \rightarrow In order to get from the status menu into the main menu, press button \overline{O} .

5.1 MENU STRUCTURE

Main menu

Status			
Solar	Solar		
Arrangement	Basic setting —	Basic setting	
Heating	Optional functions	System	
HQM	Function control	Collector	
Basic settings		Store	
SD card		Loading logic	
Manual mode	Arrangement		
User code	Optional functions -	Ontional func-	
Inputs/Modules		tions	- Parallel relav
	- Heating	Parallel relav	Output
	Shared relays	Mixer	
	Heating circuits	Zone loading	
	Optional functions	Error relav	
	Screed drying		
	- Pacic cottinge		
	Date		
	Time		
	Temp unit		
	Vol unit		
	- Inputs/Modules		
	Modules		
	Inputs		

NOTE:

The menu items and adjustment values selectable are variable depending on adjustments already made. The figure only shows an exemplary excerpt of the complete menu in order to visualise the menu structure.

6. STATUS

Bypass	•
🕨 Pump	Off
Bypass	96 °C
Adj. values	>>

In the status menu of the controller, the status messages for every menu area can be found. Use the buttons \bigcirc and \bigcirc for scrolling through the status menu.

At the end of each submenu, the menu item Adj. values can be found.

If this one is selected, the corresponding menu opens.

 \rightarrow In order to get back to the status menu, press button $\overline{\gamma}$.

6.1 MEASURED / BALANCE VALUES

In the **Status/Meas./Bal. val.** menu, all current measurement values as well as a range of balance values are displayed. Some of the menu items can be selected in order to enter a submenu.

Each sensor and output is indicated with the component or function it has been allocated to. The symbol \blacktriangleright at the edge of the display next to a sensor allocated to a function, means that this sensor has several functions. Use buttons $\boxed{2}$ and 4 to scroll to these functions. The sensors and outputs of the controller and all modules connected are listed in numerical order.

6.2 SOLAR

The **Status/Solar** menu shows all status information of the solar system and all optional functions activated.

6.3 ARRANGEMENT

The **Status/Arrangement** menu shows all status information of all activated optional functions of the arrangement.

6.4 HEATING

In the **Status / Heating** menu, the status of the demands and heating circuits activated as well as of the selected optional functions is indicated.

6.5 HQM

In the **Status / HQM** menu, all current measured values of the flow and return sensors, flow rate and power as well as heat quantities are indicated.

Furthermore, the impulse counter values are indicated.

6.6 MESSAGES

In the Status/Messages menu, error and warning messages are indicated.

During normal operation, the message Everything OK is indicated.

When a monitoring function from the function control is activated and detects a fault condition, a corresponding message will be indicated (see table page 127).

A message consists of the name of the monitoring function, a 4-digit error code and a short text description of the fault condition.

- In order to acknowledge a message, proceed as follows:
- 1. Select the code line of the desired message by pressing buttons $\underline{}$ and $\overline{}$.
- 2. Acknowledge the message by pressing button (s).
- 3. Confirm the security enquiry with Yes.

When the installer user code has been entered, the menu item **Restarts** will appear below the messages. The value indicates the number of controller restarts since commissioning. This value cannot be reset.

Status: Messages	Ŧ
• Everything OK	
Restarts	3
Version	1.XX

6. STATUS

Error code	Display	Monitoring function	Cause
0001	!Sensor fault	Sensor line break	Sensor line broken
0002	!Sensor fault	Sensor short circuit	Sensor line short-circuited
0011	!∆T too high	ΔT too high	Collector 50 K > than store to be loaded
0021	Night circulation	Night circulation	Betw. 11 pm and 5 am col. temp > 40 °C
0031	!FL/RE interch.	FL/RL interchanged	Col. temp. does not rise after switching on
0041	!Flow rate monit.	Flow rate monitoring	No flow at sensor
0051	!Overpressure	Overpressure monitoring	Max. system pressure exceeded
0052	!Low pressure	Low pressure monitoring	System pressure below minimum
0061	!Data storage def.	Storing and changing ad- justments not possible	
0071	!RTC module def.	Time-controlled functions (e.g. night correction) not possible	
0081	!Store max. temp.	Maximum store temper- ature	St. max has been exceeded
0091	Restarts	Restart counter (non-adjustable)	Number of restarts since commissioning

NOTE: The **!FL/RE interch.** error can only be correctly detected and indicated, if the collector sensor measures the temperature directly in the fluid at the collector outlet. If the collector sensor is not correctly placed, a false message may occur.

→ Place the collector sensor directly in the fluid at the collector outlet or deactivate the FL/RE interch. function control.

6.7 HOME SCREEN

In the Home screen menu, the menu which will appear if no button is pressed for a longer period of time can be selected.

In this menu, all adjustments for the solar part of the arrangement can be adjusted. The **Solar** menu consists of the following submenus:

- Basic setting
- Optional functions
- Function control
- Holiday function
- Expert

BASIC SETTING 71

In this menu, all basic settings for the solar part of the arrangement can be adjusted. In this menu, the hydraulic system, which is the basis for the arrangement, can be adjusted. The setting is divided into number of collector fields and stores as well as hydraulic variant.

The number of collector fields and stores as well as the hydraulic variant have normally already been adjusted in the commissioning menu (see page 113).

•	NOT

F٠

If the setting is changed later on, all adjustments for the solar part of the arrangement will be set back to their factory settings.

If the change causes the solar system to require a relay or PWM/0-10 V output that has been allocated to an arrangement or heating function before, the relay/PWM/0-10 V output is removed from the non-solar function.

The controller supports up to 3 collector fields and up to 4 solar stores (with 2 or 3 collector fields only up to 3 or 2 solar stores respectively).

The following items in the Solar / Basic setting menu will adjust to the system selected.

Collector (1/2/3)

Solar / Basic setting / Collector (1/2/3)

Adjustment channel	Description	Adjustment range / selection	Factory setting
Colmin.	Collector minimum limitation	Yes, No	Yes
Colmin.	Minimum collector temper- ature	1090 °C	10 °C
Colem.	Collector emergency tem- perature	80200 °C	130 °C

In systems with 2 or 3 collector fields, up to 3 seperate menu items (Collector 1 to Collector 3) are displayed instead of Collector.

For each collector field, a collector minimum limitation and a collector emergency shutdown temperature can be adjusted.

Collector minimum limitation

If the collector minimum limitation option is activated, the corresponding pump is only switched on if the adjustable minimum collector temperature is exceeded. A hysteresis of 2K is set for this function.

NOTE:

If the store cooling or antifreeze function is active, the collector minimum limitation is suspended. In this case, the collector temperature may fall below the minimum temperature.

Collector	-
🕨 🛛 Colmin.	
Colmin.	10 °C
Colem .	130 °C

Collector emergency shutdown

When the collector temperature exceeds the adjusted collector emergency temperature, the corresponding pump switches off in order to protect the system components against overheating. A hysteresis of 10 K is set for the collector emergency temperature.

Store (1/2/3/4) Solar / Basic setting / Store (1/2/3/4)

Adjustment channel	Description	Adjustment range / selection	Factory setting
ΔTOn	Switch-on temperature difference	1.020.0 K	5.0 K
ΔTOff	Switch-off temperature difference	0.5 19.5 K	3.0 K
ΔTSet	Set temperature difference	1.5 30.0 K	6.0 K
Stset	Set store temperature	495 °C	45 °C
Stmax	Maximum store temperature	495 °C	60 °C
Priority	Store priority	14	system dependent
HysSt	Hysteresis set and maximum store temperature	0.1 10.0 K	2.0 K
Rise	Rise value	1.020.0 K	1.0 K
tMin	Minimum runtime	0 300 s	30 s
Min. speed	Minimum speed	20100%	30%
Store	Blocked for solar loading	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

In systems with 2 or more stores, the corresponding number of separate menu items (**Store 1** to **Store 4**) is displayed instead of **Store**.

For each store, an individual ΔT control, a set and a maximum temperature, the priority (in multi-store systems), a hysteresis, a rise value, a minimum runtime and a minimum pump speed can be adjusted.

The ΔT control works as a standard differential control. If the temperature difference reaches or exceeds the switch-on temperature difference, the corresponding pump switches on. When the temperature difference reaches or falls below the adjusted switch-off temperature difference, the corresponding output switches off.

NOTE:

he switch-on temperature difference mu

The switch-on temperature difference must be at least 0.5K higher than the switch-off temperature difference.

In multi-store-systems with differing set store / maximum store temperatures, all stores are first loaded up to their set store temperatures, then up to their maximum store temperatures (according to their priority and the store sequence control). If one of the stores does not reach its set temperature, e.g. because the temperature difference is not sufficiently high, the subsequent store will be loaded past its set temperature up to its maximum temperature, if the switch-on condition is fulfilled (does not apply if successive loading has been selected).

The store number refers to the corresponding store sensor, not to the priority of the store. In the **Priority** channel, the corresponding store number is suggested as factory setting, but may be changed at will.

If stores have been adjusted to identical values, they are loaded in parallel.

The store numbers refer to the sensors as follows:

Store 1 = Sensor S2

Store 2 = Sensor S4

Store 3 = Sensor S5

Store 4 = Sensor S6 or S7

Each loading process will be carried out for the duration of the minimum runtime at least, regardless of the switch-off condition.

NOTE:

In ord

In order to prevent system damage, the controller is also equipped with an integrated store emergency shutdown, deactivating the whole solar system as soon as one of the stores reaches $95 \, ^{\circ}$ C [200 $^{\circ}$ F].

Load, logic	-
▶Type S	Store seq.
Load, br	eak 2 min
Circ. t.	15 min

Loading logic Solar / Basic setting / Load. logic

Adjustment channel	Description	Adjustment range / selection	Factory setting
Туре	Loading logic type	Store seq./Succ. loading	Store sequence control
Load. break	Loading break time	15 min	2 min
Circ. t.	Circulation time	160 min	15 min
Break speed	Break speed option	Yes, No	No
Speed	Loading break time speed	20100%	30%
Spreaded loading	Spreaded loading option	Yes, No	No
ΔΤ	Spreaded loading temperature difference	2090 K	40 K
Pump delay	Pump delay	Yes, No	No
Delay	Delay time	5 600 s	15 s

In systems with 2 or more stores, loading logic adjustments can be made in this menu. In systems with 1 store, only the menu item **Pump delay** is available.

Each loading process will be carried out for the minimum runtime (**Solar/Basic setting /Store**) at least, regardless of the switch-off condition.

Store sequence control type

If the priority store cannot be loaded, the subordinate store next in priority will be checked. If useful heat can be added, it will be loaded for the circulation time. After this, the loading process stops and the controller monitors the increase in collector temperature during the loading break time. If it increases by 2K, the break time timer will start again to allow the collector to gain more heat. If the collector temperature does not increase sufficiently, the subordinate store will be loaded again for the circulation time as before.

As soon as the switch-on condition of the priority store is fulfilled, it will be loaded. If the switchon condition of the priority store is not fulfilled, loading of the subordinate store will be continued. If the priority store reaches its maximum temperature, store sequence control will not be carried out.

Successive loading type

Successive loading means that the priority store will be loaded up to its maximum temperature. If it is reached, the next store available for heating will be loaded. If the temperature of the priority store falls below the set store temperature, the next store will no longer be loaded, regardless of whether the switch-on conditions of the priority store or of the subordinate store are fulfilled or not.

If all stores have been loaded to their set temperatures, the same process will take place until the stores have reached their maximum temperatures.

Spreaded loading option

In multi-store systems without 3-port valves, a spreaded loading function can be activated: As soon as the adjustable temperature difference between the collector and the priority store is exceeded, the next store will be loaded in parallel unless it is blocked. If the temperature difference falls by 2 K below the adjusted value, the pump will be switched off.

Solar/Relays	*
🕨 Primi, pump	
R1;/	دد ۵
2-PV store 1	

Relay Solar / Basic setting / Relay

Adjustment channel	Description	Adjustment range / se- lection	Factory setting
Relay	Relay display	system dependent	system dependent
PWM/0-10 V	PWM/0-10 V option	Yes, No	No
Output	Signal output se- lection	system dependent	system dependent
Signal	Signal type	PWM, 0-10 V	PWM
Profile	Curve	Solar, Heating	Solar
Speed	Speed control	Yes, No	system dependent
Min.	Minimum speed	20100%	20%
Max.	Maximum speed	20100%	100%
Adapter	Adapter option	Yes, No	No
Inverted	Inverted switching option	Yes, No	No
Blocking pro- tect.	Blocking protection option	Yes, No	No
Manual mode	Operating mode	Max., Auto, Min., Off	Auto

This submenu indicates the components to which the ouputs of the system selected have been allocated. All adjustments required for the outputs can be made in this menu.

7.2 OPTIONAL FUNCTIONS

In this menu, additional functions can be selected and adjusted for the solar part of the arrangement.

The kind and number of optional functions offered depends on the previous adjustments.

Ŧ

For further information about adjusting optional functions, see page 108.

Bypass

Exemplary schematics for the bypass variants

Solar / Opt. functions / Add new function / Bypass

Description	Adjustment range / selec- tion	Factory setting
Collector field	system dependent	system dependent
Bypass output	system dependent	system dependent
Variant (pump or valve logic)	Pump, Valve	Pump
Valve logic inversion	Yes, No	No
Bypass sensor	system dependent	system dependent
Bypass switch-on temperature difference	1.020.0 K	3.0 K
Bypass switch-off temperature difference	0.5 19.5 K	2.0 K
Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Switch input selection	-	-
	Description Collector field Bypass output Variant (pump or valve logic) Valve logic inversion Bypass sensor Bypass switch-on temperature difference Bypass switch-off temperature difference Activation / Deactivation Switch input selection	Adjustment range / selec- tionCollector fieldsystem dependentBypass outputsystem dependentVariant (pump or valve logic)Pump, ValveValve logic inversionYes, NoBypass sensorsystem dependentBypass switch-on temperature1.020.0 Kdifference0.5 19.5 KdifferenceActivated, DeactivationActivation / DeactivationActivated, SwitchSwitch input selection-

Add new function	
Bypass	
Ext. HX	
Tube collector	

Bypass	-
Collector	1
Output	R3
Туре	Pump

Ext. HX	+
🕨 Output	R4
Store	1,2
Sensor HX	S4

This function can be used for avoiding an energy loss directly after the solar circuit has been switched on. The still cold heat transfer medium in the pipework is diverted through a bypass past the store. Once the fluid is warm enough, the store can be loaded.

Depending on whether the bypass is energised by a valve or by a second pump, a corresponding adjustment can be made in the menu item **Type**. Depending on the variant, different control logics are applied:

Pump type

In this version, a bypass pump is placed in front of the solar pump.

The bypass pump is first activated when store loading is possible. If the temperature difference between the bypass sensor and the store sensor reaches the switch-on temperature difference, the bypass pump is switched off and the solar pump is switched on instead.

Valve type

External heat exchanger

In this version, a bypass valve is placed into the solar circuit.

The valve initially remains switched so that the bypass is active when store loading is possible. If the temperature difference between the bypass sensor and the store sensor reaches the switch-on temperature difference, the bypass relay operates the valve and solar loading starts. When the valve variant is selected, the option **Inverted** is additionally available. When the **Inverted** option and the bypass circuit are activated, the relay switches on. If the temperature difference between the bypass sensor and the store sensor reaches the switch-on temperature difference, the relay switches off.

Solar / Opt. functions / Add new function / Ext. HX			
Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Store	Store selection	system dependent	all stores
Sensor HX	Reference sensor external heat exchanger	system dependent	system dependent
Target temp.	Target temperature option	Yes, No	No
Sensor	Target temperature refer- ence sensor	system dependent	system dependent
Targ. temp.	Target temperature	1595 °C	60 °C
ΔTOn	Switch-on temperature difference	1.020.0 K	5.0 K
∆TOff	Switch-off temperature difference	0.519.5 K	3.0 K
Overrun	Overrun time	015 min	2 min

This function is used to link loading circuits that are separated by an external heat exchanger. The allocated output is energised if one of the selected stores is being loaded and there is a temperature difference between the sensor of the corresponding store and the reference sensor external heat exchanger.

Any number of the solar stores can be selected.

The output is switched off if this temperature difference falls below the adjusted switch-off difference.

In systems in which stores are equipped with their own loading pumps, the heat exchanger relay controls the primary circuit pump.

If the **Target temp.** option is activated, the pump speed control logic will change. The controller will remain at the minimum pump speed until the temperature at the allocated sensor exceeds the adjusted target temperature.

If the temperature at the reference sensor target temperature exceeds the target temperature by 5K, the speed of the primary pump will be increased by 10%. If the temperature again increases by 5K, the speed of the secondary pump will be adapted, too. Each temperature increase by 5K will lead to an alternating adaptation of the primary and secondary pump speeds. If the temperature falls, the speed will be reduced correspondingly.

NOTE:

The heat exchanger is protected by a non-adjustable antifreeze function. Still, using a bypass is recommended.

The heat exchanger is protected by a non-adjustable antifreeze function. If the temperature at the heat exchanger sensor falls below the antifreeze temperature (10 °C), the controller will activate the secondary pump at 100 % speed. The antifreeze function will use heat from the store with the highest temperature. When all stores have reached 10 °C, the secondary pump will be switched off. If the temperature at the reference sensor exceeds the antifreeze temperature by 2K, the secondary pump will be switched off.

The heat exchanger antifreeze function works independently from solar loading.

Because of the special hydraulics in systems with 2 or 3 collector fields, the target temperature option will not work properly there.

Tube collector function

Solar / Opt. functions / Add new function / Tube collector

Adjustment channel	Description	Adjustment range / selection	Factory setting
Start	Start time frame	00:0023:00	08:00
Stop	Stop time frame	00:3023:30	19:00
Run	Pump runtime	5 600 s	30 s
Break	Standstill interval	160 min	30 min
Collector	Collector field	system dependent	system dependent
Stmax off	Switch-on suppression	Yes, No	Yes
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	_	_

This function is used for improving the switch-on behaviour in systems with non-ideal sensor positions (e.g. with some tube collectors).

This function operates within an adjusted time frame. It activates the collector circuit pump for an adjustable runtime between adjustable standstill intervals in order to compensate for the delayed temperature measurement.

If the runtime is set to more than 10 s, the pump will run at 100% for the first 10 s of the runtime. For the remaining runtime, the pump will run at the adjusted minimum speed.

If the collector sensor is defective or the collector is blocked, this function is suppressed or switched off.

If the **Stmax off** option is activated and all stores have exceeded their respective maximum temperature, the tube collector function will be suppressed.

2- and 3-collector systems

In systems with 2 or 3 collector fields, the tube collector function will be available for each individual collector field.

The tube collector function will remain inactive for a collector field which is used for solar loading.

Ŧ
08:00
19:00
30 s

Target temp.	Ŧ
🕨 Targ. temp.	65 °C
Sensor	S4
Rise	2.0 K

Target temperature

Solar / Opt. functions / Add new function / Target temp.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Targ. temp.	Target temperature	20110 °C	65 °C
Sensor	Reference sensor	system dependent	system dependent
Rise	Rise value	1.020.0 K	1.0 K
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

If this function is activated, the pump speed control logic will change. The controller will remain at the minimum pump speed until the temperature at the allocated sensor exceeds the adjusted target temperature. Only then will the standard pump speed control start to operate. If the temperature at the allocated sensor changes by 1/10 of the adjusted rise value, the pump speed will be adjusted correspondingly.

If the **Ext. HX** function with the **Targ. temp.** option (see page 132) is additionally activated, the target temperature control will pause while the external heat exchanger is loaded. While the external heat exchanger is loaded, its own pump speed control will come into effect.

Antifreeze

Solar / Opt. functions / Add new function / Antifreeze

Adjustment channel	Description	Adjustment range / selection	Factory setting
Antifr. on	Switch-on temperature	-40+15 °C	+4 °C
Antifr. off	Switch-off temperature	-39+16 °C	+6 °C
Collector	Collector field	system dependent	system dependent
Store (14)	Store succession order	system dependent	system dependent
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

This function activates the loading circuit between the collector and the store when the collector temperature falls below the adjusted switch-on temperature. This will protect the fluid against freezing or coagulating. If the switch-off temperature is exceeded, the solar pump will be switched off again.

Heat will be extracted from the stores according to the adjusted order. When all stores have reached their minimum temperature of 5 °C, the function becomes inactive.

If the function is activated, the pump will run at its maximum relative speed.

NOTE:

NOTE:

Since this function uses the limited heat quantity of the store, the antifreeze function should be used in regions with few days of temperatures around the freezing point. This function should only be used in systems which do not use any antifreeze.

In systems with 2 or 3 collector fields, 2 or 3 separate menus will be displayed.

Antifreeze	-
🕨 Antifr. on	4 °C
Antifr. off	6 °C
Collector	1,2

Parallel relay

Output

Store Funct.

BH suppress.	Ŧ
🕨 Output	R4
Store	1,2
□Stset	

Backup heating suppression Solar / Opt. functions / Add new function / BH suppress.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Reference output	system dependent	system dependent
Store	Store selection	system dependent	system dependent
Stset	Set store temperature	Yes, No	No
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

This function blocks the conventional backup heating of a store that is currently in solar loading. This function is activated if a previously selected store is being loaded by solar heat.

Solar loading means that store loading is only carried out for energy supply and not for cooling purposes etc.

If the **Stset** option is activated, the backup heating will only be suppressed when the store temperature exceeds the set store temperature.

Parallel relay

R4

Activated

Solar / Opt. functions / Add new function / Parallel relay

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Parallel output	system dependent	system dependent
Store	Store selection	system dependent	system dependent
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

With this function, e.g. a valve can be controlled in parallel to a solar pump via a separate output.

Switch-on condition for the solar parallel relay function is that one or more of the selected stores is being loaded. If one of the selected stores is being loaded, the parallel output will be energised.

The parallel relay function operates regardless whether the store is subjected to regular solar loading or to a loading caused by a solar optional function (such as the collector cooling).

If a relay is in the manual mode, the selected parallel output will not be energised.

Cooling mode 🛛 💂			
Type	Syst. cool.		
Store 1	1		
Store 2	2		

Cooling mode

Solar / Opt. functions / Add new function / Cooling mode

Adjustment channel	Description	Adjustment range / selection	Factory setting
Туре	Cooling logic variant	Col. cool., Syst. cool., Off	Off
TColmax.	Collector maximum temper- ature	70190 °C	100 °C
Store (1 4)	Store succession order	system dependent	system dependent
St. cooling	Store cooling option	Yes, No	No
ΔTOn	Switch-on temperature difference	1.030.0 K	20.0 K
ΔTOff	Switch-off temperature difference	0.529.5 K	15.0 K
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

In the **Cooling mode** menu, different cooling functions are available. They can be used for keeping the solar system operational for a longer time during strong solar irradiation.

For this purpose, the adjusted maximum store temperatures can be exceeded. The store order for this overloading can be adjusted. Additionally, each individual store can be excluded from this function.

2 different variants are available for the cooling mode: the system cooling and the collector cooling.

System cooling type

If the switch-on temperature difference is exceeded, the stores continue to be loaded even if their corresponding maximum temperature is reached, but only up to the emergency shutdown temperature. Store loading continues until all stores have reached the emergency shutdown temperature or until the switch-off temperature difference is reached.

Collector cooling type

If the collector maximum temperature is exceeded, the stores will be loaded above their respective maximum temperature.

Store loading continues until all stores have reached the emergency shutdown temperature or until the collector temperature falls below the collector maximum temperature by at least 5K. The control logic considers collector cooling operation to be solar loading. The adjusted values for delay, minimum runtime etc. remain valid.

Additionally to each of the two variants, the store cooling option can be activated.

Store cooling option

When the store cooling option is activated, the controller aims to cool down the store during the night in order to prepare it for solar loading on the following day.

The store cooling option is active, if the maximum store temperature is exceeded. If, in addition to that, the collector temperature falls below the store temperature, the solar pump switches on. The solar pump remains active until the store temperature falls below the adjusted maximum store temperature.

The store order for the cooling is the same as in the overheating through system- or collector cooling.

Drainback option

Solar / Opt. functions / Add new function / Drainback

Adjustment channel	Description	Adjustment range / selection	Factory setting
Filling time	Drainback flling time	130 min	5 min
Stab. time	Stabilisation time	1.015.0 min	2.0 min
Initialis.	Initialisation time	1 100 s	60 s
Booster	Booster option	Yes, No	No
Output	Output selection booster	system dependent	system dependent
	pump		
Drain impulse	Drainback impulse option	Yes, No	No
Delay	Delay time	130 min	3 min
Duration	Drain impulse loading	1 60 s	10 s
	duration		
Funct.	Activation / Deactivation	Activated, Deactivated,	Deactivated
		Switch	
Sensor	Switch input selection	-	-

Exemplary drainback system layout (R2 = booster pump)

In a drainback system the heat transfer fluid will flow into a holding tank if solar loading does not take place. The drainback option initiates the filling process if solar loading is about to start.

NOTE:

A drainback system requires additional components such as a holding tank. The drainback option should only be activated if all components required are properly installed.

The filling time can be adjusted using the parameter **Filling time**. During this period, the pump runs at maximum speed.

The parameter **Stab. time** is used for adjusting the time period during which the switch-off condition will be ignored after the filling time has ended.

Drainback	Ŧ
🕨 Filling time	5 min
Stab. time	2.0 min
Initialis.	60 s

Twin pump

Output

Ref. relay Runtime The parameter **Initialis**. is used for adjusting the period during which the switch-on condition must be permanently fulfilled, before the filling process starts.

The **Booster** option is used for switching on a second pump when filling the solar system. The corresponding output is switched on at 100 % speed for the duration of the filling time.

After the system has been emptied and the delay time elapsed, the **Drain impulse** option will switch on the solar pump for an adjustable duration. Thus, a hydrostatic head will form in the flow pipe. When it falls back into the holding tank, water pockets remaining in the collector will be sucked down into the holding tank.

R4

6 h

NOTE:

If the drainback option is used in multi store systems, the **Break speed** option has to be activated in the **Solar/Basic setting/Load. logic** menu!

Twin pump

Solar / Opt. functions / Add new function / Twin pump

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Twin pump output selection	system dependent	system dependent
Ref. relay	Reference relay selection	system dependent	-
Runtime	Pump runtime	148 h	6 h
Flow rate mon.	Flow rate monitoring option	Yes, No	No
Sen. flow rate	Flow rate sensor selection	system dependent	-
Delay	Delay time	1 10 min	5 min
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function controls the equal distribution of pump runtime in systems with 2 equally usable pumps.

If the selected reference relay has exceeded the adjusted runtime, the allocated output (twin pump) is switched on in the next switch-on process. All characteristics are adopted.

If the allocated output has in turn exceeded its runtime as well, the selected reference relay is switched on again in the next switch-on process.

Additionally, flow rate monitoring can be activated in order to activate the twin pump in case of a flow rate error. If flow rate monitoring is activated, an error message appears when no flow rate is detected at the allocated sensor after the delay time has elapsed. The active output is considered defective and is blocked until the error message has been acknowledged. The second output is activated instead. The twin pump function no longer takes place until the error message has been acknowledged.

When the error message is acknowledged, the controller runs a test during which it energises the corresponding output and again monitors the flow rate.

Heat dump

Solar / Opt. functions / Add new function / Heat dump

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Туре	Variant (pump or valve logic)	Valve, Pump	Valve
ΔTValve	Temperature difference valve	0.0 10.0 K	3.0 K
	open		
Collector	Collector selection	system dependent	1
TCol.	Collector overtemperature	40190 °C	110 °C
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Concor	Switch input calaction		

Sensor Switch input selection

This function can be used to direct excess heat generated by strong solar irradiation to an external heat exchanger (e.g. fan coil) in order to keep the collector temperature within the operating range. Whether the heat dump is activated via an additional pump or a valve can be adjusted in the **Type** menu.

Exemplary figure of twin pumps in the solar flow with upstream flowmeter

Heat dump	-
Output	R4
Туре	Valve
ΔTValve	3.0 К

Flow rate mon.	Ŧ
Sensor	IMP1
Ref. relay	R4
Store	1

Pump type

The allocated output will be energised with 100%, if the collector temperature reaches the adjusted switch-on temperature.

If the collector temperature falls by 5K below the adjusted collector overtemperature, the output will be switched off. In the pump variant, the heat dump function works independently from solar loading.

Valve type

If the collector temperature reaches the value [TCol. - Δ TValve], the allocated output will be switched on in order to open the valve. If the collector temperature reaches the collector overtemperature, the solar pump will be activated. If the collector temperature falls by 5K below the adjusted collector overtemperature, the solar pump will be switched off again. If the collector temperature falls by 10K below the switch-on temperature, the valve will be put into its initial position.

If one of the store temperatures exceeds its store maximum temperature by more than 10 K while the heat dump function is active, the function will be deactivated and an error message will appear. If the temperature falls below this value by the hysteresis (Solar / Basic setting / Store), the heat dump function will be released again.

The switch-on collector temperature must be adjusted at least by 10K lower than the emergency switch-off temperature.

Flow rate monitoring

Solar / Opt. Iu	neuons / Auu new		rate mon.
Adjuctmont		۸diua	tmont rango

Solar / Ont functions / Add now function / Elow rate mon

Adjustment channel	Description	Adjustment range / selection	Factory setting
Sensor	Flow rate sensor selection	system dependent	-
Ref. relay	Reference relay selection	system dependent	-
Store	Store selection	system dependent	1
Time	Delay time	1300 s	30 s
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used to detect malfunctions that impede the flow rate and to switch off the corresponding output. This will prevent system damage, e.g. through a dry run of the pump. If the flow rate monitoring function is activated, an error message will appear when no flow rate is detected at the allocated flow rate sensor after the delay time has elapsed.

- If a reference relay has been selected, the flow rate monitoring function will become active when the allocated relay switches on. In case of an error, the complete solar system will be shut down.
- If both a store and a reference relay have been selected, the flow rate monitoring function will become active when the allocated relay switches on. In case of an error, the allocated store will be blocked until the error message has been acknowledged. The next store free for loading will be loaded instead.

The error message will appear both in the Status / Messages menu and in the Status / Solar / Flow rate mon. menu.

Pressure monit.

Sensor

Ga1

Low pressure

Overpressure

Pressure monitoring

NOTE: i

The pressure monitoring function will only work when an RPS type Grundfos Direct Sensor™ is connected.

Solar / Opt. functions / Add new function / Pressure monit.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Sensor	Pressure sensor selection	Ga1, Ga2	-
Low pressure	Low pressure monitoring option	Yes, No	No
On	Switch-on threshold	0.0 9.7 bar	0.7 bar
Off	Switch-off threshold	0.1 9.8 bar	1.0 bar
Shutdown	Shutdown option	Yes, No	No
Overpressure	Overpressure monitoring option	Yes, No	No
On	Switch-on threshold	0.3 10.0 bar	5.5 bar
Off	Switch-off threshold	0.2 9.9 bar	5.0 bar
Shutdown	Shutdown option	Yes, No	No
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used for detecting overpressure or low pressure conditions inside the system, and if necessary to shut down the affected system components in order to avoid system damage.

Low pressure

If the system pressure falls below the adjustable switch-on value **On**, an error message will appear. If the Shutdown option has been activated for the low pressure monitoring function, the solar system will be shut down as well in case of a fault condition.

When the pressure reaches or exceeds the adjustable switch-off value **Off**, the system is switched on again.

NOTE: i

For the Low pressure monitoring function, Off always is at least 0.1 bar higher than **On**. The corresponding adjustment ranges will automatically adapt to that.

Overpressure

If the system pressure exceeds the adjustable switch-on value **On**, an error message will appear. If the Shutdown option has been activated for the overpressure monitoring function, the solar system will be shut down as well in case of a fault condition.

When the pressure reaches or falls below the adjustable switch-off value Off, the system is switched on again.

NOTE:

For the **Overpressure** monitoring function, **On** always is at least 0.1 bar higher than Off. The corresponding adjustment ranges will automatically adapt to that.

7.3 **FUNCTION CONTROL**

Solar / Function control

Only if the installer code is entered (see page 173), will the function control menu be available.

Adjustment channel	Description	range / selec- tion	Factory setting
ΔT too high	ΔT monitoring option	Yes, No	No
Night circulation	Night circulation monitoring option	Yes, No	No
FL/RL interch.	FL/RE interchange monitoring option	Yes, No	No
Stmax	Maximum store temperature monitor- ing option	Yes, No	Yes
Store	Store selection	system de- pendent	system depend- ent

Function control	Ŧ
▶ 🗆 ∆T too high	
🗆 Night circulatio	n
□FL/RE interch.	

$\Delta \textbf{T}$ monitoring option

This function is used for monitoring the temperature difference. The message ΔT too high will be shown if solar loading has been carried out for a period of 20 min with a differential higher than 50K. Normal operation is not cancelled or inhibited, but the system should be checked for the cause of the warning.

Possible causes are:

- pump power too weak
- hydraulic blockage of a system component
- · circulation problems in the collector
- · air inside the system
- defective valve / defective pump

Night circulation

This function can be used for detecting thermal circulation inside the solar circuit that leads to an unwanted cooling of the store. A warning message appears when one of the following conditions has been detected for at least 1 min during the period between 11 p.m. and 5 a.m.:

- collector temperature exceeds 40 °C
- the temperature difference exceeds ΔTOn

The delay time of 1 min ensures that the message is not triggered by short-term fault conditions. Possible causes are:

- defective non-return valves
- · defective valve

· wrongly adjusted time

Flow and return interchanged

This function is used for detecting an interchange of the flow and return pipe or a badly placed collector sensor. For this purpose, the collector temperature is monitored for plausibility during the switch-on phases of the solar pump. The message **FL / RE interch.** appears, when the plausibility criteria have not been met 5 times in a row.

NOTE:

The **!FL/RE interch.** error can only be correctly detected and indicated, if the collector sensor measures the temperature directly in the fluid at the collector outlet. If the collector sensor is not correctly placed, a false message may occur.

→ Place the collector sensor directly in the fluid at the collector outlet or deactivate the FL/RE interch. function control.

Maximum store temperature

This function is used for detecting and indicating if the adjusted maximum store temperature has been exceeded. The controller compares the current store temperature to the adjusted maximum store temperature, thus monitoring the store loading circuits.

The maximum store temperature is considered exceeded when the temperature measured at the store sensor exceeds the adjusted maximum store temperature by at least 5 K. The monitoring becomes active again as soon as the store temperature falls below the adjusted maximum store temperature.

In the **Store** channel, the store or stores to be monitored can be selected.

A possible cause for an unwanted exceedance of the maximum store temperature is a defective valve.

Holiday functio	n 👻
🕨 Cooling 🛛 🤇	Col. cool.
TColmax.	100 °C
Store 1	1

Holiday function Solar/Holiday function

Adjustment channel	Description	Adjustment range / selection	Factory setting
Cooling	Cooling logic variant	Col. cool., Syst. cool., Off	Off
TColmax.	Collector maximum temper- ature	70190 °C	100 °C
Store (14)	Store succession order	system dependent	system dependent
St. cooling	Store cooling option	Yes, No	Yes
∆TOn	Switch-on temperature difference	1.030.0 K	20.0 K
∆TOff	Switch-off temperature difference	0.529.5 K	15.0 K
Stmax (14)	Store cooling temperature	495 °C	40 °C
Heat dump	Store heat dump	Yes, No	No
Output	Output selection	system dependent	-
Sensor	Sensor selection	system dependent	-
TStoreOn	Switch-on temperature	595 °C	65 °C
TStoreOff	Switch-off temperature	494 °C	45 °C

The holiday function is used for operating the system when no water consumption is expected, e.g. during a holiday absence. This function cools down the system in order to reduce the thermal load.

Only if the holiday function has been activated with the parameter **Days of absence** will the adjustments described in the following become active.

The parameter **Days of absence** can be used for entering the number of days for a holiday absence.

➔ In order to adjust the days of absence, press and hold down button ⑦ for 5 s.

If the parameter is set to a value higher than 0, the function becomes active using the adjustments that have previously been made in the Holiday function menu. The days will be counted backwards at 00:00. If the value is set to 0, the function is deactivated.

The remaining days of absence are displayed in the status menu and can be changed there later on.

2 cooling functions are available: System cooling, collector cooling

System cooling type

If the switch-on temperature difference is exceeded, the stores continue to be loaded even if their corresponding maximum temperature is reached, but only up to the emergency shutdown temperature. Store loading continues until all stores have reached the emergency shutdown temperature or until the switch-off temperature difference is reached.

Collector cooling type

If the collector maximum temperature is exceeded, the stores will be loaded above their respective maximum temperature.

Store loading continues until all stores have reached the emergency shutdown temperature or until the collector temperature falls below the collector maximum temperature by at least 5K. The control logic regards collector cooling operation as solar loading. The adjusted values for delay, minimum runtime, etc. remain valid.

Additionally to each of the two variants, the store cooling can be activated.

Store cooling option

When the store cooling option is activated, the controller aims to cool down the store during the night in order to prepare it for solar loading on the following day.

The store cooling option is active, if the maximum store temperature is exceeded. If, in addition to that, the collector temperature falls below the store temperature, the solar pump switches on. The solar pump remains active until the store temperature falls below the adjusted maximum store temperature.

The store order for the cooling is the same as in the overheating through system- or collector cooling.

Example of flow and return sensor positions

Store heat dump option

This option can be used to direct excess heat generated by strong solar irradiation from the store to an external heat exchanger (e.g. fan coil) or radiator in order to prevent the collectors from overheating. The store heat dump function is independent of the solar system and can be activated with the parameter **Heat dump**. The function uses the adjustable switch-on and switch-off temperature differences **TStoreOn** and **TStoreOff**.

If the temperature measured at the sensor selected reaches the switch-on temperature, the output selected will be energised until the temperature difference falls below the switch-off value.

7.4 SOLAR EXPERT MENU

The expert menu is only available when the installer user code has been entered.

Solar / Expert

Adjustment channel	Description	Adjustment range / selection	Factory setting
Flow sensor	Flow sensor option	Yes, No	No
Sensor	Flow sensor selection	system dependent	-
Return sensor	Return sensor option	Yes, No	No
Sensor	Return sensor selection	system dependent	-

In the expert menu, a flow and a return sensor can be selected and allocated. The activated sensors are then used to detect the switch-off condition.

Because of the special hydraulics in systems with 2 or 3 collectors, this function will not work properly there.

8. ARRANGEMENT

Arr. / Opt. funct.

Parallel relay
Add new function
back

Add new function	Ŧ
Parallel relay	
Mixer	
Zone loading	

Parallel relay	Ŧ
🕨 Output	R4
Ref. relay	-
Overrun	

In this menu, all adjustments for the non-solar part of the arrangement can be made.

8.1 OPTIONAL FUNCTIONS

In this menu, optional functions can be selected and adjusted for the arrangement. The kind and number of optional functions offered depends on the previous adjustments.

For further information about adjusting optional functions, see page 108.

Parallel relay

Arrangement / Opt. functions / Add new function / Parallel relay

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Ref. relay	Reference relay selection	system dependent	-
Overrun	Overrun option	Yes, No	No
Duration	Overrun time	130 min	1 min
Delay	Delay option	Yes, No	No
Duration	Delay time	130 min	1 min
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used for operating an allocated output alongside a selected reference relay. With this function, e.g. a valve can be controlled in parallel to the pump via a separate output. If the **Overrun** option is activated, the output remains switched on for the adjusted overrun time after the reference relay has been switched off.

If the **Delay** option is activated, the output is energised after the adjusted duration has elapsed. If the reference relay is switched off again during the delay time, the parallel output is not be switched on at all.

NOTE: If a relay is in the manual mode, the selected output will not be energised.

Mixer

Arrangement / Opt. functions / Add new function / Mixer

Adjustment channel	Description	Adjustment range / selection	Factory setting
Mixer cl.	Output selection mixer closed	system dependent	system dependent
Mixer op.	Output selection mixer open	system dependent	system dependent
Sensor	Sensor selection	system dependent	system dependent
TMixer	Mixer target temperature	0130 °C	60 °C
Interval	Mixer interval	1 20 s	2 S
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used to adjust the actual flow temperature to the desired mixer target temperature. The mixer will be opened or closed in pulses depending on this deviation. The mixer will be controlled with the adjustable interval. The pause is determined by the difference between the actual value and the set value.

Mi×er	-
Mixer cl.	RЗ
Mixer op.	R4
Sensor	S4

8. ARRANGEMENT

Zone loading	-
🕨 Output	R3
Sensor top	S3
Sensor base	S4

Zone loading

Arrangement / Opt. functions / Add new function / Zone loading

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Sensor top	Top sensor selection	system dependent	system dependent
Sensor base	Base sensor selection	system dependent	system dependent
TOn	Switch-on temperature	094 °C	45 °C
TOff	Switch-off temperature	195 °C	60 °C
Timer	Timer function	Yes, No	No
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	_	-

This function can be used for loading a store zone between 2 sensors. For monitoring the switch-on and switch-off conditions, 2 sensors are used. The switch-on and switch-off temperatures are used as reference parameters.

If the measured temperatures at both allocated sensors fall below the adjusted switch-on temperature, the output will be energised. The output will be switched off again if the temperature at both sensors has exceeded the switch-off temperature. If one of the two sensors is defective, zone loading is cancelled or switched off.

For information on timer adjustment see page 105.

Error relay

Arrangement / Opt. functions / Add new function / Error relay

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used for operating an output in case of an error. Thus, e.g. a signalling device can be connected in order to signal errors.

If the error relay function is activated, the allocated output will operate when a fault occurs. If the flow rate monitoring and/or pressure monitoring function is additionally activated, the allocated output will also operate in case of a flow rate or pressure error.

Heat exchange

Arrangement / Opt. functions / Add new function / Heat exchange

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Sen. source	Heat source sensor selection	system dependent	system dependent
Sen. sink	Heat sink sensor selection	system dependent	system dependent
ΔTOn	Switch-on temperature differ- ence	1.030.0 K	5.0 K
ΔTOff	Switch-off temperature differ- ence	0.529.5 K	3.0 K
∆TSet	Set temperature difference	1.540.0 K	6.0 K
TMax	Maximum temperature of the store to be loaded	1095 °C	60 °C
TMin	Minimum temperature of the store to be discharged	1095 °C	10 °C
Timer	Timer function	Yes, No	No
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

Error relay		
• Output	R3	
Funct.	Activated	
Save function		

Heat exchange	-
🕨 Output	R3
Sen. source	S3
Sen. sink	S4

This function can be used for transferring heat from a heat source to a heat sink. The allocated output is energised when all switch-on conditions are fulfilled:

- the temperature difference between the allocated sensors has exceeded the switch-on temperature difference
- the temperature difference between the allocated sensors has not fallen below the switch-off temperature difference
- the temperature at the heat source sensor has exceeded the minimum temperature
- the temperature at the heat sink sensor is below the maximum temperature

Arrangement / Opt. functions / Add new function / Solid fuel boiler

• one of the adjusted time frames is active (if the **Timer** option is selected)

If the temperature difference exceeds the adjusted set value by 1/10 of the rise value, the pump speed increases by one step (1%).

When the **Timer** option is activated, a timer is indicated in which time frames for the function can be adjusted.

Adjustment

NOTE:

Solid fuel boiler

Adjustment

For information on timer adjustment see page 105.

Solid fuel boiler	Ŧ
Output	R4
Sen. boiler	S3
Sen. store	S4

Ŧ	Solid fuel boiler
R4	🕨 Output
S3	Sen. boiler
S4	Sen. store
	Sen. boiler Sen. store

channel	Description	range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Sen. boiler	Solid fuel boiler sensor selection	system dependent	system dependent
Sen. store	Store sensor selection	system dependent	system dependent
ΔTOn	Switch-on temperature difference	2.030.0 K	6.0 K
ΔTOff	Switch-off temperature difference	1.029.0 K	4.0 K
ΔTSet	Set temperature difference	3.040.0 K	10.0 K
TStoremax	Maximum temperature	495 °C	60 °C
TMin boiler	Minimum temperature	495 °C	60 °C
Target temp.	Target temperature option	Yes, No	No
Targ. temp.	Target temperature	3085 °C	65 °C
Sensor	Target temperature reference sensor	system dependent	system dependent
Mixer	Mixer option	Yes, No	No
Mixer cl.	Output selection mixer closed	system dependent	system dependent
Mixer op.	Output selection mixer open	system dependent	system dependent
Sensor	Mixer sensor allocation	system dependent	system dependent
ΔTOpen	Temperature difference mixer open	0.5 30.0 K	5.0 K
ΔTClosed	Temperature difference mixer closed	0.029.5 K	2.0 K
Interval	Mixer interval	1 20 s	2 s
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used for transferring heat from a solid fuel boiler to a store.

The allocated output is energised when all switch-on conditions are fulfilled:

- the temperature difference between the allocated sensors has exceeded the switch-on temperature difference
- the temperature difference between the allocated sensors has not fallen below the switch-off temperature difference
- the temperature at the solid fuel boiler sensor has exceeded the minimum temperature
- the temperature at the store sensor is below the maximum temperature

When the set temperature difference is exceeded, pump speed control starts. For every deviation by 1/10 of the adjusted rise value, the pump speed will be adjusted by 1%.

If the Target temp. option is activated, the pump speed control logic will change. The controller will remain at the minimum pump speed until the temperature at the allocated sensor exceeds the adjusted target temperature.

The Mixer option can be used to keep the boiler return temperature above the adjustable temperature **TMin boiler**. The mixer will be controlled with the adjustable interval.

Ret. preheat.	-
🕨 Output	R4
Sen. return	S4
Sen. source	S3

Return preheating

Arrangement / Opt. functions / Add new function / Ret. preheat.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Output	Output selection	system dependent	system dependent
Sen. return	Return sensor selection	system dependent	system dependent
Sen. source	Heat source sensor selection	system dependent	system dependent
ΔTOn	Switch-on temperature difference	2.030.0 K	5.0 K
ΔTOff	Switch-off temperature difference	1.029.0 K	3.0 K
Summer off	Summer switch-off option	Yes, No	No
Sensor	Outdoor sensor selection	system dependent	system dependent
TOff	Switch-off temperature	1060 °C	20 °C
Funct.	Activation / Deactivation	Activated, Deacti-	Activated
		vated, Switch	
Sensor	Switch input selection	-	-

This function can be used for transferring heat from a heat source to the heating circuit return. The allocated output is energised when all switch-on conditions are fulfilled:

- the temperature difference between the allocated sensors has exceeded the switch-on temperature difference
- the temperature difference between the allocated sensors has not fallen below the switch-off temperature difference
- if **Summer off** is activated, the temperature at the outdoor temperature sensor falls below the adjusted outdoor temperature value

With the summer switch-off option, the return preheating can be suppressed outside the heating period.

Function block

Arrangement / Opt. functions / Add new function / Function block

Adjustment channel	Description	Adjustment range	Factory setting
Output	Output selection	system dependent	system dependent
Thermostat a	Thermostat function a	Yes, No	No
Th-a on	Switch-on temperature thermo- stat a	-40+250 °C	+40 °C
Th-a off	Switch-off temperature thermo- stat a	-40+250 °C	+45 °C
Sensor	Sensor thermostat a	system dependent	system dependent
Thermostat b	Thermostat function b	Yes, No	No
Th-b on	Switch-on temperature thermostat b	-40+250 °C	+40 °C
Th-b off	Switch-off temperature thermostat b	-40+250 °C	+45 °C
Sensor	Sensor thermostat b	system dependent	system dependent
ΔT function	Differential function	Yes, No	No
ΔTOn	Switch-on temperature difference	1.050.0 K	5.0 K
ΔTOff	Switch-off temperature difference	0.5 49.5 K	3.0 K
∆TSet	Set temperature difference	3100 K	10 K
Sen. source	Heat source sensor	system dependent	system dependent
Sen. sink	Heat sink sensor	system dependent	system dependent
Timer	Timer function	Yes, No	No
Ref. output	Reference output function	Yes, No	No
Mode	Reference output mode	OR, AND, NOR, NAND	OR
Output	Reference output 1	all outputs	-
Output	Reference output 2	all outputs	-
Output	Reference output 3	all outputs	-
Output	Reference output 4	all outputs	-
Output	Reference output 5	all outputs	-
Flow rate	Flow rate function	Yes, No	No
Fl. on	Switch-on flow rate	1.0 999.0 l/min	8.0 l/min
Fl. off	Switch-off flow rate	0.5 998.5 l/min	7.5 l/min
Sen. flow rate	Flow rate sensor	system dependent	-
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

Function block	Ŧ
Output	R4
🗆 Thermostat a	
□ Thermostat b	

In addition to the pre-defined optional functions, function blocks consisting of thermostat functions, timer, differential, reference output and flow rate functions are available. With the help of these function blocks, further components and functions respectively can be controlled. To each function block, sensors and outputs available can be allocated.

Within a function block the functions are interconnected (AND gate). This means that the switching conditions of all the activated functions have to be fulfilled for switching the allocated output. As soon as one condition is not fulfilled, the output will switch off.

Thermostat function

The switching condition for the thermostat function is considered fulfilled when the adjusted switch-on temperature (Th-(x) on) is reached.

The switching condition for the thermostat function is considered unfulfilled when the adjusted switch-off temperature (Th-(x) off) is reached.

Allocate the reference sensor in the Sensor channel.

Adjust the maximum temperature limitation with (Th-(x) off) > (Th-(x) on) and the minimum temperature limitation with (Th-(x) on) > (Th-(x) off). The temperatures cannot be set to an identical value.

$\Delta \textbf{T}$ function

The switching condition for the ΔT function is considered fulfilled when the adjusted switch-on temperature (ΔTOn) is reached.

The switching condition for the ΔT function is no longer considered fulfilled when the adjusted switch-off temperature (ΔT Off) is reached.

The ΔT function is equipped with a speed control function. A set temperature difference and a minimum speed can be adjusted. The non-adjustable rise value is 2K.

Reference output

Up to 5 reference outputs can be selected. Whether the reference outputs are to be switched in series (AND), in parallel (OR), in series + inverted (NAND) or in parallel + inverted (NOR) can be adjusted in the **Mode** channel.

OR mode

If at least one of the reference outputs is switched on, the switching condition for the reference output function is considered fulfilled.

If none of the reference outputs is switched on, the switching condition for the reference output function is considered unfulfilled.

NOR mode

If none of the reference outputs is switched on, the switching condition for the reference output function is considered fulfilled.

If at least one of the reference outputs is switched on, the switching condition for the reference output function is considered unfulfilled.

AND mode

If all reference outputs are switched on, the switching condition for the reference output function is considered fulfilled.

If at least one of the reference outputs is switched off, the switching condition for the reference output function is considered unfulfilled.

NAND mode

If at least one of the reference outputs is switched off, the switching condition for the reference output function is considered fulfilled.

If all reference outputs are switched on, the switching condition for the reference output function is considered unfulfilled.

Flow rate

If the adjusted switch-on flow rate is exceeded, the switching condition for the flow rate function is considered fulfilled.

If the flow rate falls below the adjusted switch-off value, the condition for the flow rate function is no longer considered fulfilled.

The flow rate sensor for this function can be selected.

For information on timer adjustment see page 105.

RMS	+
Mixer op.	R2
Mixer cl.	R3
Sen. store	S3

RMS

Arrangement / Opt. functions / Add new function / RMS

Adjustment channel	Description	Adjustment range / selection	Factory setting
Mixer op.	Output selection mixer open	system dependent	system dependent
Mixer cl.	Output selection mixer closed	system dependent	system dependent
Sen. store	Store sensor allocation	system dependent	system dependent
Sen. HC ret.	HC return sensor allocation	system dependent	system dependent
Sen. boiler ret.	Boiler return sensor allocation	system dependent	system dependent
ΔTOn	Switch-on temperature difference	1.025.0 K	5.0 K
ΔTOff	Switch-off temperature difference	0.524.0 K	3.0 K
ΔTSet	Set temperature difference	-20+25 K	+15 K
ТМах	Maximum boiler return temper-	1080 °C	60 °C
	ature		
Interval	Mixer interval	1 20 s	2 S
Heating circuit	Detection controller heating circuit active	Internal, External	Internal
Heating circuit	Heating circuit allocation	HC 17	-
Runtime	Mixer runtime	10 600 s	140 s
Detection	Mixer opening degree	50 90%	60%
Time	Time of automatic adjustment	00:00 23:45	00:00
Funct.	Activation / Deactivation	Activated, Deacti-	Activated
	Outline insult and a time	vateu, Switch	
Sensor	Switch input selection	-	-

This function can be used for heating backup.

Heat from the store is mixed into the heating circuit return by means of a mixing valve in order to add heat to the heating circuit. The controller compares the temperature at the selected store sensor to the heating circuit return temperature. If the store temperature exceeds the heating circuit return temperature of the store temperature exceeds the heating circuit return temperature by the switch-on temperature difference, the mixer will be used to add solar heat from the store to the heating circuit return. The mixer will be opened or closed in pulses depending on this deviation. The mixer will be controlled with the adjustable interval. The pause is determined by the difference between the actual value and the set value.

Flow rate mon.	-
Sensor	IMP1
Ref. relay	R4
Time	30 s

Thus, the heating circuit return temperature increases by the Δ **TSet** value. The adjustable maximum boiler return temperature limits the mixing temperature. If the store temperature falls below the heating circuit return temperature by the switch-off temperature difference, the mixer will close.

The runtime defines the time needed for the mixer to switch from its initial position to the end position. The **Detection** parameter determines the opening angle of the mixer when the heating circuit is to be checked for activity. The **Time** defines the point in time at which the mixer is completely closed for adjustment every 24 hours.

Heating circuit internal

If **Internal** is selected in the **HC** parameter, the **RMS** function will only become active when the selected heating circuit of the controller is active, too. For this purpose, the heating circuit selected has to be controlled by the controller or by a module connected.

Flow rate monitoring

Arrangement / Opt. functions / Add new function / Flow rate mon.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Sensor	Flow rate sensor selection	system dependent	-
Ref. relay	Reference relay selection	system dependent	-
Time	Delay time	1300s	30 s
Funct.	Activation / Deactivation	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

This function can be used to detect malfunctions that impede the flow rate and to switch off the corresponding output. This will prevent system damage, e.g. through a dry run of the pump. If the flow rate monitoring function is activated, an error message will appear when no flow rate is detected at the allocated flow rate sensor after the delay time has elapsed.

If a reference relay has been selected, the flow rate monitoring function will become active when the allocated relay switches on. In case of an error, the complete solar system will be shut down.

The error message will appear both in the **Status / Messages** menu and in the **Status / Arrangement / Flow rate mon.** menu. It can be acknowledged in the **Status / Arrangement / Flow rate mon.** menu only.

Heating	Ŧ
Shared rel.	
HCs	
Opt. functions	
Heating	*
Opt. functions	
Screed drying	
🕨 back	

Н	eating /	S	hared rel.	Ŧ
Γ	Dem.	1	Activat	:ed
Þ	Dem	n.	1	>>
	Dem.	2	Deactivat	ed

Demand 1	+
🕨 🛛 Relay	
Relay	>>
⊠0-10 V	

In this menu, all adjustments for the heating part of the arrangement or for the heating circuits respectively can be made.

9.1 SHARED RELAYS

In this menu, adjustments for heat generators which are shared by several heating circuits and their optional functions can be made.

Shared relays will be available for selection under **Virtual** in the heating circuits and in the relay allocation channels of the corresponding optional functions of the heating menu. This way, several heating circuits and optional functions (heating) can demand the same heat source.

Activate and adjust the shared relays first. They will then be available in the heating circuits and optional functions.

Heating / Shared rel.

Adjustment channel	Description	Adjustment range / selec- tion	Factory setting
Dem. 1 (2)	Demand 1 (2)	Activated, Deacti- vated	Deactivated
Relay	Relay option	Yes, No	No
Relay	Relay submenu	-	-
Relay	Relay selection	system dependent	system dependent
Boiler pr. min	Option for boiler protection min	Yes, No	No
TMin	Minimum boiler temperature	1090 °C	55 °C
Boiler pr. max	Option for boiler protection max	Yes, No	No
ТМах	Maximum boiler temperature	2095 °C	90 °C
Sen. boiler	Boiler sensor selection	system dependent	S4
0-10V	0-10 V option	Yes, No	No
0-10V	0-10 V submenu	-	-
Output	Output selection	-, A, B, C, D	-
TSet 1	Lower boiler temperature	1085 °C	10 °C
Volt 1	Lower voltage	1.010.0 V	1.0 V
TSet 2	Upper boiler temperature	1590 °C	80 °C
Volt 2	Upper voltage	1.010.0 V	8.0 V
Permanent volt.	Permanent voltage option	Yes, No	No
Volt	Permanent voltage value	0.1 9.9 V	2.0 V
TMin	Minimum value set boiler temper- ature	1089 °C	10 °C
ТМах	Maximum value set boiler temper- ature	1190 °C	80 °C
ΔTFlow	Increase for the set flow temper- ature	020 K	5 K
Sen. flow	Flow sensor option	Yes, No	No
Sensor	Flow sensor selection	system dependent	S4
Interval	Monitoring period	10 600 s	30 s

Adjustment channel	Description	Adjustment range / selec- tion	Factory setting
Hysteresis	Correction hysteresis	0.5 20.0 K	1.0 K
Correction	Correction of the voltage signal	0.01.0 V	0.1 V
Min. runtime	Minimum runtime option	Yes, No	No
tMin	Minimum runtime	0120 min	10 min
Manual mode	Operating mode for shared relays	Max., Auto, Off, Min.	Auto
Pump 1 (2)	Shared relay option for loading pump	Activated, Deacti- vated	Deactivated
Pump 1 (2)	Pump submenu	-	-
Output	Output selection	system dependent	system dependent
Delay	Pump delay	No, Time, Temp.	No
TOn	Boiler start-up temperature	1090 °C	60 °C
Duration	Delay to a demand	0 300 s	60 s
Overrun	Pump overrun	No, Time, Temp.	No
TOff	Remaining boiler temperature	1090 °C	50 °C
Duration	Delay to a demand	0 300 s	60 s
Sen. boiler	Boiler sensor selection	system dependent	system dependent
Manual mode	Manual mode of output	Max., Auto, Min., Off	Auto
Valve 1 (2)	Shared relay option for valve	Activated, Deacti- vated	Deactivated
Valve 1 (2)	Valve submenu	-	-
Output	Output selection	system dependent	system dependent
Manual mode	Manual mode of output	Max., Auto, Min.,	Auto

back

Every demand can be carried out by means of a relay and/or a 0-10 V output. If both the **Relay** and the **0-10 V** option are activated, the demand uses both outputs in parallel.

Example:

The potential-free relay R7 can be allocated to the shared relay **Dem. 1**, for example. R7 will then become available for potential-free boiler demand in the heating circuits and e.g. the DHW heating function.

Relay option

If the **Relay** option is activated, the submenu **Relay** appears, in which a relay can be allocated to the demand.

The **Boiler pr. min** option is used for protecting a boiler against cooling. If the temperature falls below the adjusted minimum temperature, the allocated relay will be energised until the minimum temperature is exceeded by 5 K.

The **Boiler pr. max** option is used for protecting a boiler against overheating. If the adjusted maximum temperature is exceeded, the allocated relay will be switched off until the temperature falls by 5K below the maximum temperature.

For this purpose, a boiler sensor is required.

0-10 V option

If the 0-10 V option is activated, the submenu 0-10 V appears, in which a 0-10 V output can be allocated to the demand.

With this option, the controller can demand modulating heat generators equipped with a 0-10 V interface.

The characteristic curve of the 0-10 V signal as a function of the set boiler temperature is defined by means of 2 set points according to the specifications of the boiler manufacturer. At a temperature of **TSet 1**, the voltage signal of the heat generator is **Volt 1**. At a temperature of **TSet 2**, the voltage signal of the heat generator is **Volt 2**. The controller automatically calculates the characteristic curve resulting from these values. If the **permanent voltage** option is activated, the parameter **Volt** appears, by means of which a minimum voltage that is permanently applied to the output can be defined.

By means of the adjustment channels **TMax** and **TMin** the maximum and minimum values for the set boiler temperature can be defined.

When the **Sen. flow** option is activated, the controller monitors whether the heat generator actually reaches the desired set temperature and, if necessary, adjusts the voltage signal accordingly. In order to do so, the controller checks the temperature at the boiler flow sensor when the interval has elapsed. If the temperature measured deviates from the set boiler temperature by more than the hysteresis, the voltage signal is adapted by the **Correction** value. This process will be repeated until the temperature measured is identical to the set boiler temperature. When the **Min. runtime** option is activated, a minimum runtime can be adjusted for the demand.

Pump

For loading pumps, the shared relays **Pump 1** and **Pump 2** are available. Concerning a demand, the options **Delay** and **Overrun** can be activated for the shared relays. The demand can either be time- or temperature controlled. For temperature-dependent control an allocated boiler sensor is required.

The **Delay** option is used for switching on the loading pump with a delay to a demand. If the adjusted minimum temperature at the allocated sensor is exceeded or the adjusted duration has elapsed, the allocated output switches on. The **Overrun** option is used for switching off the loading pump with a delay to a demand. If the temperature falls below the adjusted remaining boiler temperature or the adjusted duration has elapsed, the allocated output switches off.

Valve

Valves and parallel relays can use the shared relays **Valve 1** and **Valve 2**. These shared relays are energised individually or along with a reference relay (e.g. loading pump).

If the 0-10 V demand is used for DHW heating, the voltage signal will always be identical to **TMax**.

9.2 HEATING CIRCUITS

The controller has 2 mixed weather-compensated heating circuits and is able to control up to 3 external mixed heating circuits by means of extension modules.

If one or more extension modules are connected, they have to be registered with the controller. Only registered modules will be available in the heating circuit selection.

If **new HC**... is selected for the first time, the first heating circuit is allocated to the controller. In the heating circuit menu, relays for the heating circuit pump and the heating circuit mixer can be selected.

3 relays are required for a mixed heating circuit.

In the **System** parameter, a selection can be made between **Heat, Cool** and **Heat/Cool**. If the measured flow temperature deviates from the set flow temperature, the mixer will be activated in order to adjust the flow temperature correspondingly.

The mixer runtime can be adjusted with the parameter **Interval**.

Heating system submenu

In the **Heating system** submenu, a mode for the heating circuit control can be selected and adjusted. 5 modes are available:

- Constant
- Curve
- Linear
- Room influence
- Room

The calculated set flow temperature is limited by the adjusted values for the maximum flow temperature and the minimum flow temperature.

Maximum flow temperature \geq set flow temperature \geq minimum flow temperature The remote control allows manual adjustment of the heating curve (± 15K). Furthermore, the heating circuit can be switched off or a rapid heat-up can be carried out by means of the remote control.

Heating / HCs	
HC 1	
HC 2	
🕨 new HC	

. .

нс	*
🕨 System	Heat
Heat. sys.	>>
HC pump	R4
нс	*
🕨 Heat. sys.	>>
HC pump	R2
Mixer op.	R3

Heat. sys.	+
Mode	Constant
TFlowset	45 °C
TFlowmin	20 °C
TFlowmin	20 °0

Heat, sys,	-
Mode	Curve
Curve	1.0
TFlowmin	20 °C

Heating circuit switched off means that the heating circuit pump is switched off and the mixer closed. The flow temperature is boosted to maximum for rapid heat-up when the remote control is set to rapid heat-up.

If the outdoor temperature sensor is defective, an error message will be indicated. For the duration of this condition, the maximum flow temperature -5K is assumed as the set flow temperature in the **Curve** and **Linear** mode.

By means of the adjustment channels **TFlowmax** and **TFlowmin** the maximum and minimum values for the set flow temperature can be defined.

The **Constant** mode aims to keep the set flow temperature at a constant value which can be adjusted by means of the parameter **TFlowset**.

Set flow temperature = TFlowset + remote control + day correction or night correction NOTE:

The controller uses an averaged outdoor temperature.

If the **Curve** mode is selected, the controller calculates a set flow temperature by means of the outdoor temperature and the heating curve selected. In both cases, the dial setting of the remote control and the controller day correction or night correction will be added.

Set flow temperature = heating curve temperature + remote control + day correction or night correction.

In the **Linear** mode the flow temperature curve will be calculated depending on the outdoor temperature by 2 points. At a temperature of **TOutdoor 1** the set flow temperature is **TFIOW 1**. At a temperature of **TOutdoor 2** the set flow temperature is **TFIOW 2**. The controller automatically calculates the characteristic curve resulting from these values.

In the **Room influence** mode, the weather-compensated set flow temperature will be expanded by a demand-based room control. The parameter **Room factor** can be used for determining the intensity of the room influence.

The controller will calculate the set flow temperature using the heating system Curve plus the room influence: Set flow temperature = set temperature + remote control + day correction or night correction + room influence.

In order to calculate the deviation of the room temperature from the adjusted set value, at least one sensor-type room thermostat is required. The adjustments can be made in the **Room therm.** submenu.

In the **Room** mode, the controller will calculate the set flow temperature by means of the room temperature, the outdoor temperature will not be taken into account. Day/Night correction and Timer will not be indicated.

The start value of the set flow temperature can be influenced by the parameter **TStart**. In order to calculate the deviation of the room temperature from the adjusted set value, at least one sensor-type room thermostat is required (see page 154). The adjustments can be made with the **Room therm. (1...5)** parameter. For this purpose, select **Sensor** in the **Type** adjustment channel.

The adjustments of all activated room thermostats will be taken into account. The controller will calculate the average value of the deviations measured and correct the set flow temperature correspondingly.

Heat, sys,	+
Mode	Linear
TOutdoor	1 20 °C
TFlow 1	20 °C
Heat. sys.	+
Mode	Room infl.
Curve	1.0
Room fact	or 5

Heat. sys.	*
Mode	Room
TStart	40 °C
TFlowmin	20 °C

нс	\$
🕨 🗆 Timer	
Timer	>>
🛛 🗆 Summer opei	r.
Timer	
▶ Mode Day / N	Jight
Timer	>>
back	
μc	
	Ŧ
USummer oper	·.
Summer oper	°. >>
Remote acces	55
Summer oper.	-
Mode Dav / N	liaht
TDay off 21	n or
TNight off 1	4 ord
	<u> </u>
нс	÷
🛛 🛛 Remote acces	s
Remote acces	s 🔀
Room therm.	>>
Remote access	
Mode	BAS
Sen, BAS	S3

		Mode
Þ	🖲 App	
	O Fern	
	O BAS	

back

Room thermostats	
🗆 Room therm. 1	
🗆 Room therm. 2	
🕨 🛛 Room therm . 3	

Timer

With the timer, the day / correction operation can be adjusted. During day phases, the set flow temperature is increased by the adjusted day correction.

The parameter **Mode** is used for selecting between the following correction modes:

Day/Night: A reduced set flow temperature (night correction) is used during Night operation. Day/Off: The heating circuit and the optionally activated backup heating are switched off during night operation.

The **Timer** can be used for adjusting the time frames for day operation.

Summer operation

In summer mode, the heating circuit is switched off.

For summer operation, 2 different modes are available:

Day: If the outdoor temperature exceeds the summer temperature day, the heating circuit switches off.

Day/Night: The parameters Daytime on and Daytime off can be used for adjusting a time frame for the summer operation. If the outdoor temperature exceeds the summer temperature day within the adjusted time frame, the heating circuit switches off.

Outside the adjusted time frame the summer temperature night is valid.

Remote access

With the parameter Remote access different types of remote access to the controller can be activated.

NOTE:

In the sensor selection menu, only outputs which have previously been selected as the input for remote access in the Inputs/Modules menu will be available. In the Sensor config. channel, sensors not used and not registered can be selected.

The following types of remote access are possible:

Remote control: A device which allows manual adjustment of the heating curve, thus influencing the set flow temperature.

→ In order to use a remote control, set the **Mode** to **Fern**.

Room control unit: A device incorporating a remote control as well as an additional operating mode switch.

→ In order to use a room control unit, set the **Mode** to **BAS**.

The operating mode switch of the room control unit is used for adjusting the operating mode of the controller. If a room control unit is used, the operating mode can be adjusted by means of the room control unit only. The status menu will only allow the activation of the operating mode Holiday.

App: If App is selected, remote access as with a remote control or room control unit via an app is possible.

If Fern or BAS is adjusted, read access is possible with the app.

→ In order to use an app, set the **Mode** to **App**.

If you use an app, the operating mode can be adjusted in the controller menu as well as in the app.

Room thermostat option

Up to 5 room thermostats can be integrated into the control logic.

To each room thermostat, a sensor input can be allocated. If the measured temperature exceeds the adjusted set room temperature at all activated room thermostats and if the parameter HC off is activated, the heating circuit switches off.

Common room thermostats with potential-free outputs can be used alternatively. In this case, Switch must be selected in the Type channel.

Room thermostats	* *
Type Sen:	sor
Sensor RTH	S4
TAmb.set 18	٥d
Room thermostats	-
Timer	
Correction 5	5 K
 Output 	R4
RTH1 HC 1	-
🕨 🛛 Relav	
Relav	R4
□ PWM/0-10 V	
Backup heating	-
Mode Zo	ne
Output Dem	n.1
Sensor 1	S4
вн нс 1	_
Mode Stand:	ərd
r Moue Stanua	зч
Relay	
□ Relay □ PWM/0-10 V	
□ Relay □ PWM/0-10 V вн нс 1	
□Relay □PWM/0-10V вн нс 1 ▶ Mode Dema	- and
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem	
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adi, values	• and 1.1
□Relay □PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adj. values	→ and n.1 >>
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adj. values Backup heating	→ and 1.1 >>
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adj. values Backup heating ▶ Loading pump	→ and 1.1 >> R4
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adj. values Backup heating ▶ Loading pump □ Start. opt.	and 1.1 R4
□ Relay □ PWM/0-10 V BH HC 1 > Mode Dema Output Dem Adj. values Backup heating > Loading pump □ Start. opt. □ Stopp. opt.	• ind n.1 >>
□ Relay □ PWM/0-10 V BH HC 1 ▶ Mode Dema Output Dem Adj. values Backup heating ▶ Loading pump □ Start. opt. □ Stopp. opt. Backup heating	→ ind h.1 >> R4
□ Relay □ PWM/0-10 V BH HC 1 Mode Dema Output Dem Adj. values Backup heating Loading pump □ Start. opt. □ Stopp. opt. Backup heating N Solar off	→ ind ind 1.1 ≫ + R4
□ Relay □ PWM/0-10 V BH HC 1 > Mode Dema Output Dem Adj. values Backup heating > Loading pump □ Start. opt. □ Stopp. opt. Backup heating > ⊠ Solar off Store	
□ Relay □ PWM/0-10 V BH HC 1 Mode Dema Output Dem Adj. values Backup heating Loading pump □ Start. opt. □ Stopp. opt. Backup heating Store Store Store	• ind 1.1 • R4
□ Relay □ PWM/0-10 V BH HC 1 Mode Dema Output Dem Adj. values Backup heating Loading pump □ Start. opt. □ Stopp. opt. Backup heating Store Store □ Stset	▼ and 1.1 × R4 1
□ Relay □ PWM/0-10 V BH HC 1 Mode Dema Output Dem Adj. values Backup heating Loading pump □ Start. opt. □ Stopp. opt. Backup heating Store Store Store Stset Backup heating	
□ Relay □ PWM/0-10 V BH HC 1 Mode Dema Output Dem Adj. values Backup heating Loading pump □ Start. opt. □ Stopp. opt. Backup heating Store Store Store Store Stset Backup heating Stset	▼ and 1.1
□ Relay □ PWM/0-10 V BH HC 1 • Mode Dema Output Dem Adj. values Backup heating • Loading pump □ Start. opt. □ Stopp. opt. Backup heating • ⊠ Solar off Store □ Stset Backup heating • ⊠ SFB off SFB	▼ and 1.1 × R4 1 ↓ 1

When the **Timer** option is activated, a timer is indicated in which time frames for the function can be adjusted. Outside these time frames, the adjusted room temperature is decreased by the **Correction** value.

If the heating circuit is in cooling mode, the set room temperature is increased by the **Correction** value.

For information on timer adjustment see page 105.

To each room thermostat, an additional output can be allocated. The output switches on when the temperature falls below the adjusted room temperature. This way, the room in question can be excluded from the heating circuit via a valve as long as the desired room temperature is reached.

Backup heating

For the backup heating of the heating circuit, 3 modes are available:

Therm.: In this mode, the set flow temperature is compared to a store reference sensor.

Zone: In this mode, the set flow temperature is compared to 2 store reference sensors. The switching conditions have to be fulfilled at both reference sensors.

On/Off: In this mode, the backup heating is activated when the heating circuit pump is switched on for heating.

In the **Output** submenu, the modes **Standard** and **Demand** are available. If **Standard** is selected, the output can be adjusted

If **Demand** is selected, a demand has to be activated and adjusted in the **Heating / Shared** rel. menu first. If **Adj. values** is selected, the **Heating / Shared rel. / Demand** will open.

In the correction mode **Day/Off** (see page 154) the heating circuit and the backup heating will be completely switched off during the night operation. The starting optimisation can be used for activating the backup heating before the day operation in order to heat the store to a sufficiently high temperature. The stopping optimisation can be used for deactivating the backup heating before the start of the night operation.

If **Solar off** is activated, backup heating is suppressed when an adjusted store is being loaded. If the **Stset** option is activated, the backup heating will only be suppressed when the store temperature exceeds the set store temperature.

If **SFB off** is activated, backup heating is suppressed when a selected solid fuel boiler is active.

DHW priority

If the parameter **DHW priority** is activated, the heating circuit will be switched off and the backup heating be suppressed as long as DHW heating takes place which has previously been activated in the **Heating / Opt. functions** menu.

HC.

• ⊠ Chimney sweeper □ Antifreeze □ Heat dump

Heat dump	+
Sensor	S4
TOn	85 °C
TOff	50 °C

Cooling system 🛛 🚽				
Mode	Constant			
TFlow	20 °C			
TFlowmin	10 °C			
Cooling system	m 👻			
Mode	Linear			
TOutdoor	1 20 °C			
TFlow 1	20 °C			

Mode
O both
OExt. switch
🕨 🖲 Outdoor
Dew point
OHumidity
O Switch
▶⊜Off

нс	ŧ
Dew point Hur	nidity
Sensor	Gd1
Correction	2 K

Chimney sweeper function

The chimney sweeper function can be used for enabling a quick access to measurement conditions without menu operation for the chimney sweeper.

The chimney sweeper function is activated in all heating circuits by default. The chimney sweeper mode can be activated by pressing button \odot for 5 s.

In the chimney sweeper mode, the heating circuit mixer opens, the heating circuit pump and the backup heating contact are activated. While the chimney sweeper mode is active, the directional pad is flashing red. Additionally, **Chimney sweeper** and a countdown of 30 min are indicated on the display.

When the countdown has elapsed, the chimney sweeper mode is automatically deactivated. If, during the countdown, button \odot is again pressed for more than 5 s, the chimney sweeper mode will stop.

Antifreeze function

The antifreeze function of the heating circuit can be used to temporarily activate an inactive heating circuit during sudden temperature drop in order to protect it against frost damage.

The temperature at the sensor selected will be monitored. If the temperature falls below the adjusted antifreeze temperature, the heating circuit will be activated until the antifreeze temperature is exceeded by 2 K, but at least for 30 min.

Heat dump option

This option is used for diverting excess heat to the heating circuit in order to keep the system temperatures within the operating range. If the temperature at the allocated sensor exceeds the switch-on temperature, the set flow temperature is controlled to reach the adjusted value. If the temperature falls below the adjusted switch-off temperature, the heat dump function switches off.

This option is not available, if a heating circuit mode for cooling or cooling and heating has been selected.

Cooling

In the **Cooling system** submenu, the cooling logic can be adjusted.

- For the cooling logic, 2 modes are available:
- Linear
- Constant

In the **Linear** mode, the set flow temperature will be calculated as in the heating system mode **Linear**.

The **Constant** mode aims to keep the set flow temperature at a constant value which can be adjusted by means of the parameter **TFlow**.

For activating cooling, 3 modes are available:

- Outdoor
- External switch
- Both

In the **Outdoor** mode, cooling is activated if the outdoor temperature cooling is exceeded. In the **Ext. switch** mode, cooling is activated by means of an external switch.

In the **both** mode, both switching conditions are valid for cooling.

If the **Timer** option is activated, a time frame can be adjusted in which the cooling will be active.

Dew point

The **Dew point** option is used for avoiding condensation. For this function, 3 variants are available:

- Humidity
- Switch
- Off

When **Humidity** is selected, the controller calculates the dew point by means of the humidity sensor.

The minimum flow temperature results from the dew point plus the adjustable correction value.

нс	ŧ
🕨 🛛 Emerg.	shutd.
Humidi	ty 95%
Hystere	esis 5%
	▼
Dew point	Switch
Sensor	S3
Output	R4
Backup cooling	-
Mode	Absolute
Output	Dem.1
Sensor 1	S3
Backup cooling	
Sensor 1	S3
▶ TOn	12 °C
TOff	<u> </u>
Backup cooling	1 _
Mode	- • Standard
FINOLE . E Polov	Juanuaru
Прымила и	0.17
	<u>.u v</u>
Backup cooling	1 -
Mode	Demand
Output	Dem.1
Adj. values	>>

The **emergency shutdown** option is used for switching off the cooling, if the adjustable relative humidity is exceeded. The re-energise hysteresis for this function can be adjusted. An output can be selected which is activated during an emergency shutdown, e.g. to switch on a fan.

When **Switch** is selected, an input as well as an output can be allocated to a dew point switch. If the dew point switch detects condensation, cooling is interrupted. If **Off** is selected, the **Dew point** option is switched off.

Backup cooling

For the backup cooling of the heating circuit, 4 modes are available:

Therm.: In this mode, the set flow temperature is compared to a store reference sensor.

Zone: In this mode, the set flow temperature is compared to 2 store reference sensors. The switching conditions have to be fulfilled at both reference sensors.

On/Off: In this mode, the backup cooling is activated when the heating circuit pump is switched on for cooling.

Absolute: In this mode, a switch-on and a switch-off temperature for a reference store sensor can be adjusted.

The backup cooling is activated when the switch-on temperature at sensor 1 is exceeded and switches off again when the switch-off temperature is reached.

In the **Output** submenu, the modes **Standard** and **Demand** are available. If **Standard** is selected, the output can be adjusted.

If **Demand** is selected, a demand has to be activated and adjusted in the **Heating / Shared rel.** menu first. If **Adj. values** is selected, the **Heating / Shared rel. / Demand** menu will open.

If the **Holiday** option is activated, the heating circuit switches into the correction mode. → In order to adjust the days of absence, press and hold down button ⑦ for 5 s.

Energy saving	-
🕨 Sen. return	S4
ΔTOff	4 K
Break	15 min

Energy saving operation

This option is used for optimising the energy consumption of the heating circuit pump. For this purpose an additional sensor in the heating circuit return is required. The controller monitors the temperature difference between the flow and the return of the heating circuit. If the temperature difference falls below the switch-off difference, the controller deactivates the heating circuit pump for the adjusted break time. After the break time has elapsed, the pump is activated for the runtime. If the temperature difference is higher than the switch-off difference, the pump remains active. If the temperature difference is below the switch-off difference, the break time will start again.

Heating / Heating circuits / New H	IC / Internal or Module 12
------------------------------------	----------------------------

Adjustment channel	Description	Adjustment range / selection	Factory setting
System	Heating circuit mode selection	Heat, Cool, Heat/Cool	Heat
Heat. sys.	Heating system submenu	-	-
Mode	Heating system operating mode	Linear, Constant, Curve, Room, Room infl.	Curve
Curve	Heating curve	0.33.0	1.0
Room factor	Room influence factor	110	5
TFlowset	Set flow temperature	1090 °C	45 °C
TOutdoor 1	Lower outdoor temperature	-20+20 °C	+20 °C
TFlow 1	Lower set flow temperature	2090 °C	20 °C
TOutdoor 2	Upper outdoor temperature	-20+20 °C	-20 °C
TFlow 2	Upper set flow temperature	2090 °C	70 °C
TStart	Starting temperature	2060 °C	40 °C
TFlowmin	Minimum flow temperature	2089 °C	20 °C
TElowmax	Maximum flow temperature	21 90 °C	50 °C
Interval	Mixer interval	1 205	25
HC nump	Heating circuit nump output	system dependent	system depend-
	selection		ent
Mixer op.	Output selection mixer open	system dependent	system depend- ent
Mixer cl.	Output selection mixer closed	system dependent	system depend- ent
Sen. flow	Flow sensor selection	system dependent	system depend-
Sen. outd.	Outdoor sensor selection	system dependent	system depend-
Dav corr.	Correction for day operation	-5+45 K	0 K
Night corr.	Correction for night operation	-20+30 K	-5 K
Timer	Timer function correction mode	Yes. No	Yes
Mode	Correction mode	Dav/Night, Dav/Off	Dav/Night
Timer	Timer function submenu	-	-
Summer oper	Summer operation option	Yes No	Yes
Summer oper	Summer operation submenu		-
Mode	Summer operating mode	Dav/Night Dav	Dav/Night
TDay off	Summer temperature day	$-\frac{2ay}{0}$ 40 °C	20 °C
TNight off	Summer temperature night	- <u>0 40 °C</u>	<u>14 °C</u>
Davtime on	Day time frame on	00:00 23:45	06.00
Daytime off	Day time frame off	00:00 23:45	22:00
Pomoto accoss	Pomoto accoss option		<u>22.00</u>
Remote access		103, NU	110
Mada	Remote access submenu		-
	Allocation operating mode available	BAS, FEITI, APP	DAS
Sen. BAS	Allocation operating mode switch input	all inputs type = BAS	-
Sen. RC	Allocation remote control input	all inputs type = Fern	-
Room therm.	Room thermostats submenu	-	-

Room therm. Room thermostat option (15) Yes, No No 15 Type Room thermostat type selection Sensor, Switch Sensor Sensor RTH RTH input allocation System dependent ent System dependent ent Tamb.set Set room temperature 1030 °C 18 °C Timer RTH timer function Yes, No No Correction Correction value 120 K 5 K Output Output selection System dependent ent System dependent ent RTH Room thermostat Activated, Deactivat- ed, Switch Activated RCO Heating circuit off option Yes, No No Backup heating Backup heating submenu - - Ing Sensor 1 Allocation reference sensor 1 System dependent ent System dependent ent Sensor 2 Allocation reference sensor 2 (When mode = Zone) System dependent ent System dependent ent Start. opt. Starting optimisation option Yes, No No Start. opt. Starting optimisation option Yes, No	Adjustment channel	Description	Adjustment range / selection	Factory setting
Type Room thermostat type selection Sensor, Switch Sensor Sensor RTH RTH input allocation system dependent system dependent Tamb.set Set room temperature 1030 °C 18 °C Hysteresis RTH timer function Yes, No No Correction Correction value 120 K 5 K Output Output selection system dependent system dependent RTH Room thermostat Activated, Deactivat- ed, Switch Activated HC off Heating circuit off option Yes, No No Backup heating beating option Yes, No No No Backup heating mode selection Therm, Zone, On/Off Therm. Output Output selection system dependent system depend- ent Sensor 1 Allocation reference sensor 1 system dependent system depend- ent Sensor 2 Allocation reference sensor 1 system dependent system depend- ent Sensor 3 Allocation reference sensor 1 system dependent system depend- ent Starting optimisa	Room therm. 15	Room thermostat option (15)	Yes, No	No
Sensor RTH RTH input allocation system dependent ent system dependent ent Tamb set Set room temperature 1030 °C 18 °C Hysteresis 0.520.0 K 0.5 K Timer RTH thysteresis 0.520.0 K 0.5 K Output Output selection system dependent system dependent RTH Room thermostat Activated, Deactivat Activated Backup heating circuit off option Yes, No No No Backup heating backup heating submenu ing - - - Mode Backup heating option Yes, No No Beackup heating system dependent Sensor 1 Allocation reference sensor 1 system dependent system dependent - Sensor 2 Allocation reference sensor 2 system dependent - ent ATON Switch-on temperature difference 15.044.5 K 5.0 K - ATON Switch-off temperature difference - - - Start. opt. Starting optimisation option Yes, No No <	Туре	Room thermostat type selection	Sensor, Switch	Sensor
TAmb.set Set room temperature 1030 °C 18 °C Hysteresis RTH timer function Yes, No No Correction Correction value 120 K 5 K Output Output selection system dependent ent system dependent ent RTH Room thermostat Activated, Deactivat ed, Switch Activated HC off Heating circuit off option Yes, No Yes Backup heating backup heating submenu ing - - - Mode Backup heating mode selection Therm, Zone, On/Off Therm. Output Output selection system dependent ent system depend- ent system depend- ent Sensor 1 Allocation reference sensor 1 system depend- ent system depend- ent ATOn Switch-oft temperature difference -15.044.5 K 5.0 K ATON Switch-oft temperature difference -15.0300 min 60 min Stapp.opt. Stapping optimisation option Yes, No No Time Starting optimisation option Yes, No No Stopp.opt. Stopping optimisation option Yes, No No <	Sensor RTH	RTH input allocation	system dependent	system depend- ent
HysteresisRTH hysteresis0.520.0 K0.5 KTimerRTH timer functionYes, NoNoCorrectionCorrection value120 K5 KOutputOutput selectionsystem dependentsystem dependentRTHRoom thermostatActivated, Deactivat.ActivatedHC offHeating circuit off optionYes, NoYesBackup heatingBackup heating submenuingModeBackup heating mode selectionTherm., Zone, On/OffTherm.OutputOutput selectionSystem dependentsystem depend- entSensor 1Allocation reference sensor 1system dependentsystem depend- entSensor 2Allocation reference sensor 2 witch-off temperature difference-15.044.5 K5.0 KATORSwitch-off temperature difference-15.0300 min60 minStart. opt.Starting optimisation optionYes, NoNoStart. opt.Stopping optimisation optionYes, NoNoStopp. opt.Stopping optimisation optionYes, NoNoStopp. opt.Solar off optionYes, NoNoStestSet emperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFB of	TAmb.set	Set room temperature	1030 °C	18 °C
Timer RTH timer function Yes, No No Correction Correction value 120 K 5 K Output Output selection system dependent system dependent RTH Room thermostat Activated, Deactivat- ed, Switch Activated HC off Heating circuit off option Yes, No Yes Backup heating Backup heating submenu ing - - Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection system dependent system depend- ent - Sensor 1 Allocation reference sensor 1 system dependent system depend- ent system depend- ent ATON Switch-on temperature difference 15.044.5 K 5.0 K ATON Switch-on temperature difference -1.345.0 K 15.0 K Start. opt. Starting optimisation option Yes, No No Time Stopping optimisation time 0300 min 60 min Solar off Solar off option Yes, No No S	Hysteresis	RTH hysteresis	0.520.0 K	0.5 K
Correction Correction value 120 K 5 K Output Output selection system dependent system dependent RTH Room thermostat Activated, Deactivat-ed, Switch Activated HC off Heating circuit off option Yes, No No Backup heating Backup heating option Yes, No No Backup heating Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection Therm., Zone, On/Off Therm. Sensor 1 Allocation reference sensor 1 system dependent ent system dependent Sensor 2 Allocation reference sensor 2 system dependent ent ATOM Switch-on temperature difference -14.545.0 K 15.0 K Loading pump Solar off option Yes, No No Time Starting optimisation option Yes, No No Start. opt. Starting optimisation option Yes, No No Start. opt. Starting optimisation option Yes, No No Store Allocation sola	Timer	RTH timer function	Yes, No	No
Output Output selection system dependent ent system dependent ent RTH Room thermostat Activated, Deactivat- ed, Switch Activated, Switch HC off Heating circuit off option Yes, No Yes Backup heating Backup heating submenu ing - - Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection system dependent ent system depend- ent Sensor 1 Allocation reference sensor 2 (When mode = Zone) system dependent system depend- ent ATON Switch-on temperature difference -15.0 44.5 K 5.0 K Loading pump Boiler loading pump output selection system dependent system depend- ent Start. opt. Starting optimisation option Yes, No No Time Stopping optimisation imme 0300 min 60 min Store Allocation solar store all solar stores - Store Allocation solid fuel boiler all solar stores - Store Allocation solid fuel boiler all	Correction	Correction value	120 K	5 K
RTH Room thermostat Activated, Deactivat- ed, Switch Activated HC off Heating circuit off option Yes, No Yes Backup heating Backup heating option Yes, No No Backup heat Backup heating option Yes, No No Backup heat Backup heating mode selection Therm, Zone, On/Off Therm. Output Output selection system dependent system depend- ent Sensor 1 Allocation reference sensor 2 system dependent system depend- ent Sensor 2 Allocation reference sensor 2 system dependent system depend- ent ATON Switch-on temperature difference -15.0 44.5 K 5.0 K Loading pump Boiler loading pump output selection system dependent system depend- ent Start. opt. Stopping optimisation option Yes, No No Time Stopping optimisation option Yes, No No Store Allocation solar store all solar stores - Start Set temperature option Yes, No No </td <td>Output</td> <td>Output selection</td> <td>system dependent</td> <td>system depend- ent</td>	Output	Output selection	system dependent	system depend- ent
HC off Heating circuit off option Yes, No Yes Backup heating Backup heating option Yes, No No Backup heat- ing Backup heating submenu ing - - Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection System dependent ent System dependent gystem dependent System dependent Sensor 1 Allocation reference sensor 1 System dependent System dependent Allocation reference sensor 2 System dependent System dependent System dependent ATON Switch-on temperature difference 15.0 44.5 K 5.0 K ATOff Switch-off temperature difference 15.0 45.0 K 15.0 K Icading pump Solier loading pump output System dependent ent System dependent Start.opt. Starting optimisation option Yes, No No No Time Stapping optimisation option Yes, No No Start stores - State Set temperature option Yes, No No	RTH	Room thermostat	Activated, Deactivat- ed, Switch	Activated
Backup heating Backup heating submenu ing Yes, No No Backup heating submenu ing Backup heating submenu ing - - Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection system dependent system dependent Sensor 1 Allocation reference sensor 1 system dependent system dependent Sensor 2 Allocation reference sensor 2 (When mode = Zone) system dependent system dependent ATOM Switch-off temperature difference -15.0 44.5 K 5.0 K ATOM Switch-off temperature difference -14.5 45.0 K 15.0 K Loading pump Boiler loading pump output selection system dependent ent Start. opt. Stapping optimisation option Yes, No No Time Stopping optimisation option Yes, No No Store Allocation solar store all solar stores - Stat Solid fuel boiler off option Yes, No No SFB Allocation solid fuel boiler all solar stores -	HC off	Heating circuit off option	Yes, No	Yes
Backup heat- ing Backup heating submenu mode - - Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection system dependent system dependent Sensor 1 Allocation reference sensor 1 system dependent system dependent Sensor 2 Allocation reference sensor 2 system dependent system dependent ATOM Switch-on temperature difference -16.0 44.5 K 5.0 K ATOM Switch-ont femperature difference -14.5 45.0 K 15.0 K Loading pump Boiler loading pump output selection system dependent system dependent Start. opt. Starting optimisation option Yes, No No No Time Starting optimisation option Yes, No No No Store Allocation solar store all solar stores - - Start Solid fuel boiler off option Yes, No No No Stare Set temperature option Yes, No No Set Stare Allocation sol	Backup heating	Backup heating option	Yes, No	No
Mode Backup heating mode selection Therm., Zone, On/Off Therm. Output Output selection system dependent system dependent ent Sensor 1 Allocation reference sensor 2 (When mode = Zone) system dependent system dependent ATON Switch-on temperature difference -15.0 .41.5 K 5.0 K ATOF Switch-off temperature difference -14.5	Backup heat- ing	Backup heating submenu	-	-
OutputOutput selectionsystem dependent entsystem dependent entSensor 1Allocation reference sensor 1system dependentsystem dependent entSensor 2Allocation reference sensor 2 (When mode = Zone)system dependentsystem dependentATONSwitch-on temperature difference-15.0 44.5 K5.0 KATOffSwitch-off temperature difference-14.5 45.0 K15.0 KLoading pumpBoiler loading pump output selectionsystem dependent entsystem dependent entStart. opt.Starting optimisation option selectionYes, NoNoTimeStarting optimisation option (Solar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature option (Set temperature optionYes, NoNoSFB OffSolid fuel boiler off option (Set NoYes, NoNoSFB Allocation solar df option (Set NoYes, NoNoSFB Allocation solid fuel boiler (Chimney weeper option (Chimney sweeper optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowThowsetSet flow temperature antifreeze (Cloudoor)TelastorSensorAllocation heat dump sensorSystem dependent (Set Cloudoor)+5°C (Flow)TelowsetSet flow temperature heat dump 2090 °CTelowsetSet flow temperature heat dump 2090 °CS0 °C-To	Mode	Backup heating mode selection	Therm., Zone, On/Off	Therm.
Sensor 1Allocation reference sensor 1system dependent entsystem dependent entSensor 2Allocation reference sensor 2 (When mode = Zone)system dependent entsystem dependent entATOnSwitch-on temperature difference atorin-15.044.5 K5.0 KATOffSwitch-off temperature difference selection-14.545.0 K15.0 KLoading pumpBoiler loading pump output selectionsystem dependent entsystem dependent entStart. opt.Starting optimisation option stopping optimisation optionYes, NoNoTimeStarting optimisation option Stopp. opt.Stopping optimisation option Yes, NoNoStoreAllocation solar store all solar offall solar stores set temperature option Yes, NoNoSFBSolid fuel boiler off option SFBYes, NoNoSFBAllocation solid fuel boiler all solid fuel boilers-DHW priorityDHW priority option Pes, NoYes, NoNoSensorAntifreeze option Antifreeze sensorYes, NoNoSensorAntifreeze sensorFlow, Outdoor 410°C (Outdoor) 410°C (Flow)+5°C (Flow)TFlowsetSet flow temperature heat dump entSensorAllocation heat dump sensorsystem dependent entsystem dependent entTOnSwitch-on temperature heat dump teat dump beinenSensorAllocation heat dump sensorSystem dependent ententTOn <td< td=""><td>Output</td><td>Output selection</td><td>system dependent</td><td>system depend- ent</td></td<>	Output	Output selection	system dependent	system depend- ent
Sensor 2Allocation reference sensor 2 (When mode = Zone)system dependentsystem dependent entATONSwitch-on temperature difference-15.0 44.5 K5.0 KATOffSwitch-off temperature difference-14.5 45.0 K15.0 KLoading pumpBoiler loading pump output selectionsystem dependent entsystem dependent entStart. opt.Starting optimisation optionYes, NoNoTimeStarting optimisation optionYes, NoNoTimeStopping optimisation optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChinneyChinney sweeper optionYes, NoNoAntifreezeAntifreeze optionYes, NoNoTheat dumpHeat dump optionYes, NoNoTelowsetSet flow temperature antifreeze20 +10 °C (Outdoor)+2 °C (Outdoor)TelowsetSet flow temperature heat dumpSensorAllocation heat dump sensorsystem dependententTonSwitch-on temperature heat dump20 90 °C50 °CToffSwitch-on temperature heat dumpSensorCooling system submenuTelowsetSet flow temperature heat dump20 90 °C50 °CTelowset <td< td=""><td>Sensor 1</td><td>Allocation reference sensor 1</td><td>system dependent</td><td>system depend- ent</td></td<>	Sensor 1	Allocation reference sensor 1	system dependent	system depend- ent
ATONSwitch-on temperature difference-15.0 44.5 K5.0 KATOffSwitch-off temperature difference-14.5 45.0 K15.0 KLoading pumpBoiler loading pump output selectionsystem dependent entsystem depend- entStart. opt.Starting optimisation optionYes, NoNoTimeStarting optimisation optionYes, NoNoStopp. opt.Stopping optimisation time0 300 min60 minSolar offSolar off optionYes, NoNoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoSensorAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTheat dumpHeat dump optionYes, NoNoHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentTonSwitch-on temperature heat dump2090 °C50 °CTonSwitch-on temperature heat dump2090 °C50 °CCooling systemCooling modeLinear, ConstantCooling flow temperature heat dumpStops of Allocation heat dump submenuStops of Allocation heat dump	Sensor 2	Allocation reference sensor 2 (When mode = Zone)	system dependent	system depend- ent
ATOffSwitch-off temperature difference-14.5 45.0 K15.0 KLoading pumpBoiler loading pump output selectionsystem dependentsystem dependentStart. opt.Starting optimisation optionYes, NoNoTimeStarting optimisation optionYes, NoNoStopp. opt.Stopping optimisation optionYes, NoNoStoreAllocation solar storeall solar stores-StattSet temperature optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFBSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoSensorAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTheat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentSwitch-on temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump2090 °C50 °CCooling systemCooling system submenuSensorAllocation heat dump sensorsystem dependentModeCooling flow temperature heat dump590 °C50 °CTFlowsetSet flow temperature heat dump590 °C	ΔTOn	Switch-on temperature difference	-15.0 44.5 K	5.0 K
Loading pumpBoiler loading pump output selectionsystem dependent entStart. opt.Starting optimisation optionYes, NoNoTimeStarting optimisation optionYes, NoNoTimeStopping optimisation optionYes, NoNoTimeStopping optimisation time0300 min60 minSolar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StetSet temperature optionYes, NoNoSFBSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChinneyChinney sweeper optionYes, NoNoSensorAntifreeze optionYes, NoNoSensorAntifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)Theat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentTOnSwitch-on temperature heat dump2595 °C85 °CToffSwitch-on temperature heat dump2090 °C50 °CCooling systemCooling system submenuCooling flow temperature heat dump590 °C50 °CCooling flow temperature heat dump590 °C50 °CCooling flow temperature heat dump590 °C50 °CCooling flow t	ΔTOff	Switch-off temperature difference	-14.545.0 K	15.0 K
Start. opt.Starting optimisation optionYes, NoNoTimeStarting optimisation time0300 min60 minStopp. opt.Stopping optimisation optionYes, NoNoTimeStopping optimisation time0300 min60 minSolar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFBSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoSensorAntifreeze optionYes, NoNoTantifr.Antifreeze sensorFlow, OutdoorFlowTheat dumpHeat dump optionYes, NoNoHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentTOnSwitch-on temperature heat dump2090 °C50 °CToffSwitch-off temperature heat dump2090 °C50 °CCooling systemCooling system submenuCooling flow temperature heat dump590 °C50 °CToffSwitch-off temperature heat dump590 °C50 °CCooling flow temperature heat dump590 °C50 °CCooling flow temperature590 °C	Loading pump	Boiler loading pump output selection	system dependent	system depend- ent
TimeStarting optimisation time0300 min60 minStopp. opt.Stopping optimisation optionYes, NoNoTimeStopping optimisation time0300 min60 minSolar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFBSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoSensorAntifreeze optionYes, NoNoThowsetSet flow temperature-20+10°C (Outdoor)+2°C (Outdoor)Heat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CCooling systemCooling system submenuCooling flow temperature heat dump590 °C50 °CTool StoreSet flow temperature heat dumpCooling systemCooling tow temperature595 °C20 °CTomSwitch-off temperature heat dump590 °C50 °CTooling systemCooling flow temperatureCooling flow temperature	Start. opt.	Starting optimisation option	Yes, No	No
Stopp. opt.Stopping optimisation optionYes, NoNoTimeStopping optimisation time0300 min60 minSolar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)Heat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentSystem dependentSystem dependentsystem dependentTOnSwitch-on temperature heat dump2090 °C50 °CToffSwitch-off temperature heat dump595 °C85 °CToffSwitch-off temperature heat dump590 °C50 °CTolog systemCooling system submenuModeCooling modeLinear, ConstantConstantTelowCooling flow temperature595 °C20 °C	Time	Starting optimisation time	0300 min	60 min
TimeStopping optimisation time0300 min60 minSolar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)Image: Set flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependent entTOnSwitch-on temperature heat dump2595 °C85 °CToffSwitch-off temperature heat dump590 °C50 °CTolog systemSet flow temperature heat dump590 °C50 °CTolog systemCooling system submenuModeCooling modeLinear, ConstantConstantTellowCooling modeLinear, ConstantConstant	Stopp. opt.	Stopping optimisation option	Yes, No	No
Solar offSolar off optionYes, NoNoStoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoSweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependent entsystem depend- entTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTolos systemCooling system submenuModeCooling modeLinear, ConstantConstantTelowCooling flow temperature595 °C20 °C	Time	Stopping optimisation time	0300 min	60 min
StoreAllocation solar storeall solar stores-StsetSet temperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoNoSweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)4 10°C (Flow)+5°C (Flow)-TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependententTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump590 °C50 °CToling systemCooling system submenuModeCooling modeLinear, ConstantConstantTellowCooling flow temperature525 °C20 °C	Solar off	Solar off option	Yes, No	No
StsetSet temperature optionYes, NoNoSFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoYessweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TelowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependent ent-TonSwitch-on temperature heat dump2595 °C85 °CToffSwitch-off temperature heat dump590 °C50 °CTelowsetSet flow temperature heat dump590 °C50 °CToffSwitch-off temperature heat dump590 °C50 °CToffSolitch-off temperature heat dumpModeCooling system submenuLinear, ConstantConstantConstantTelowCooling flow temperature525 °C20 °C	Store	Allocation solar store	all solar stores	-
SFB offSolid fuel boiler off optionYes, NoNoSFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoYessweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependententTOnSwitch-on temperature heat dump2595 °C85 °C50 °CToffSwitch-off temperature heat dump590 °C50 °C50 °CTooling systemCooling system submenuModeCooling modeLinear, ConstantConstant-	Stset	Set temperature option	Yes, No	No
SFBAllocation solid fuel boilerall solid fuel boilers-DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoYessweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependententTOnSwitch-on temperature heat dump2595 °C85 °CToffSwitch-off temperature heat dump2090 °C50 °CTooling systemCooling system submenuModeCooling flow temperature525 °C20 °C	SFB off	Solid fuel boiler off option	Yes, No	No
DHW priorityDHW priority optionYes, NoNoChimneyChimney sweeper optionYes, NoYessweeperAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)Theat dumpHeat dump optionYes, NoNoHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependententTOnSwitch-on temperature heat dump2595 °C85 °CToffSwitch-off temperature heat dump590 °C50 °CTooling systemCooling system submenuLinear, ConstantConstantConstantConstantTelowCooling flow temperature525 °C20 °C	SFB	Allocation solid fuel boiler	all solid fuel boilers	-
ChimneyChimney sweeper optionYes, NoYesSweeperAntifreeze optionYes, NoNoAntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)ThowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentTOnSwitch-on temperature heat dump2595 °C85 °CToffSwitch-off temperature heat dump2090 °C50 °CTooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTelowCooling flow temperature525 °C20 °C	DHW priority	DHW priority option	Yes, No	No
AntifreezeAntifreeze optionYes, NoNoSensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050°C20°CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentsystem depend- entTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTolms systemCooling system submenuTelowsetSet flow temperature heat dump2090 °C50 °CToffSwitch-off temperature heat dump590 °C50 °CTooling systemCooling system submenuTelowsetSet flow temperature heat dumpModeCooling modeLinear, ConstantConstantTelowCooling flow temperature525 °C20 °C	Chimney sweeper	Chimney sweeper option	Yes, No	Yes
SensorAntifreeze sensorFlow, OutdoorFlowTAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050°C20°CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependententTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump590 °C50 °CTooling systemCooling system submenuFlowsetSet flow temperature heat dump590 °C50 °CToffSwitch-off temperature heat dump590 °C50 °CTooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTelowCooling flow temperature525 °C20 °C	Antifreeze	Antifreeze option	Yes, No	No
TAntifr.Antifreeze temperature-20+10°C (Outdoor)+2°C (Outdoor)TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentsystem depend- entTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump590 °C50 °CTooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTelowCooling flow temperature525 °C20 °C	Sensor	Antifreeze sensor	Flow, Outdoor	Flow
TFlowsetSet flow temperature antifreeze2050 °C20 °CHeat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentsystem depend- entTOnSwitch-on temperature heat dump2595 °C85 °CTOffSwitch-off temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump590 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature525 °C20 °C	TAntifr.	Antifreeze temperature	-20+10°C (Outdoor) 410°C (Flow)	+2°C (Outdoor) +5°C (Flow)
Heat dumpHeat dump optionYes, NoNoHeat dumpHeat dump submenuSensorAllocation heat dump sensorsystem dependentsystem dependentTOnSwitch-on temperature heat dump25 95 °C85 °CTOffSwitch-off temperature heat dump20 90 °C50 °CTFlowsetSet flow temperature heat dump5 90 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature5 25 °C20 °C	TFlowset	Set flow temperature antifreeze	2050 °C	20 °C
Heat dump Heat dump submenu - - Sensor Allocation heat dump sensor system dependent system dependent TOn Switch-on temperature heat dump 2595 °C 85 °C TOff Switch-off temperature heat dump 2090 °C 50 °C TFlowset Set flow temperature heat dump 590 °C 50 °C Cooling system Cooling system submenu - - Mode Cooling mode Linear, Constant Constant TElow Cooling flow temperature 525 °C 20 °C	Heat dump	Heat dump option	Yes, No	No
SensorAllocation heat dump sensorsystem dependentsystem dependentTOnSwitch-on temperature heat dump25 95 °C85 °CTOffSwitch-off temperature heat dump20 90 °C50 °CTFlowsetSet flow temperature heat dump5 90 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature5 25 °C20 °C	Heat dump	Heat dump submenu	-	-
TOnSwitch-on temperature heat dump25 95 °C85 °CTOffSwitch-off temperature heat dump20 90 °C50 °CTFlowsetSet flow temperature heat dump5 90 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature5 25 °C20 °C	Sensor	Allocation heat dump sensor	system dependent	system depend- ent
TOffSwitch-off temperature heat dump2090 °C50 °CTFlowsetSet flow temperature heat dump590 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature525 °C20 °C	TOn	Switch-on temperature heat dump	2595 °C	85 °C
TFlowsetSet flow temperature heat dump590 °C50 °CCooling systemCooling system submenuModeCooling modeLinear, ConstantConstantTElowCooling flow temperature525 °C20 °C	TOff	Switch-off temperature heat dump	2090 °C	50 °C
Cooling system Cooling system submenu - - Mode Cooling mode Linear, Constant Constant TElow Cooling flow temperature 5 25 °C 20 °C	TFlowset	Set flow temperature heat dump	590 °C	50 °C
TElow Cooling flow temperature Effect of the statute Constant Constant	Cooling system	Cooling system submenu	- Linoar Constant	- Constant
	TELOW	Cooling flow temperature	5 25 °C	20 °C.

Adjustment channel	Description	Adjustment range / selection	Factory setting
TFlowmin	Minimum flow temperature	529 °C	10 °C
TOutdoor 1	Lower outdoor temperature	1545 °C	20 °C
TFlow 1	Lower set flow temperature	525 °C	20 °C
TOutdoor 2	Upper outdoor temperature	1545 °C	40 °C
TFlow 2	Upper set flow temperature	525 °C	10 °C
TFlowmin	Minimum flow temperature	529 °C	10 °C
TFlowmax	Maximum flow temperature	630 °C	25 °C
Output	Output selection	system dependent	system dependent
Mode	Cooling mode	Outdoor, Ext. Switch, both	-
Sensor	Switch input selection	-	-
Inverted	Inverted switching option	Yes, No	No
TDay off	Outdoor temperature cooling	2040 °C	20 °C
Timer	Timer function cooling	Yes, No	No
tOn	Switch-on time cooling	00:0023:45	00:00
tOff	Switch-off time cooling	00:0023:45	00:00
Dew point	Dew point monitoring option	Humidity, Switch, Off	Off
Sensor	Sensor input selection	system dependent	system dependent
Correction	Correction value	010 K	2 K
Emerg. shutd.	Emergency shutdown option	Yes, No	No
Humidity	Relative humidity	5100%	95%
Hysteresis	Re-energise hysteresis	110%	5%
Output	Output selection	system dependent	system dependent
Backup cooling	Backup cooling option	Yes, No	No
Backup cooling	Backup cooling submenu	-	-
Mode	Backup cooling mode selection	Absolute, Therm., Zone, On/Off	Absolute
Output	Output selection	system dependent	system depend- ent
Sensor 1	Allocation reference sensor 1	system dependent	system depend- ent
Sensor 2	Allocation reference sensor 2 (When mode = Zone)	system dependent	system depend- ent
ΔTOn	Switch-on temperature difference	-44,5+15,0K	-2,0K
ΔTOff	Switch-off temperature difference	-45,0+14,5K	-7,0K
TOn	Switch-on temperature	-13+44°C	+12°C
TOff	Switch-off temperature	-14+43°C	+8°C
Loading pump	Boiler loading pump output selec- tion	system dependent	system depend- ent
Start. opt.	Starting optimisation option	Yes, No	No
Time	Starting optimisation time	0300 min	60 min
Stopp. opt.	Stopping optimisation option	Yes, No	No
Time	Stopping optimisation time	0300 min	60 min
Holiday	Heating circuit in correction mode when holiday function is active	Yes, No	No
Energy saving	Energy saving operation option	Yes, No	No
Energy saving	Energy saving operation submenu	-	-
Sen. return	HC return sensor allocation	system dependent	system dependent
ΔTOff	Switch-off temperature difference energy saving operation	149 К	4 K
Break	Break time energy saving operation	060 min	15 min
Runtime	Runtime energy saving operation	060 min	2 min
Funct.	De/activation of the heating circuit	Activated, Deactivat- ed, Switch	Activated
Sensor	Switch input selection	-	-

Add new function

Th. Disinfection DHW heating DHW preheat.

In this menu, optional functions can be selected and adjusted for the heating part of the arrangement.

The kind and number of optional functions offered depends on the previous adjustments.

In the Demand submenu, the modes Standard and Demand are available. If Standard is selected, the output can be adjusted.

If Demand is selected, a demand has to be activated and adjusted in the Heating / Shared rel. menu first.

For further information about adjusting optional functions, see page 108.

For information on the output selection see page 109.

Thermal disinfection

Heating / Opt. functions / Add new function / Th. Disinfection

Adjustment channel	Description	Adjustment range / selection	Factory setting
Demand	Demand relay selection	system dependent	system dependent
Circulating pump	Circulating pump option	Yes, No	No
Output	Circulating pump output selection	system dependent	system dependent
Sensor	Disinfection sensor selection	system dependent	system dependent
Interval	Monitoring period	030, 123 (dd:hh)	1d Oh
Temperature	Disinfection temperature	4590 °C	60 °C
Duration	Disinfection period	0.524.0 h	1.0 h
Cancellation	Cancellation option	Yes, No	No
Cancellation	Cancellation interval	1.048.0 h	2.0 h
Start. time	Starting delay option	Yes, No	No
Start. time	Starting time	00:0023:30	20:00
Hyst. off	Switch-off hysteresis	220 K	5 K
Hyst. on	Switch-on hysteresis	119 K	2 K
TD holid. off	Thermal disinfection off when holiday function is active	Yes, No	No
BAS off	Operating mode switch off option	Yes, No	No
Sensor	Allocation operating mode switch input	system dependent	system dependent
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function helps to contain the spread of Legionella in DHW stores by systematically activating the backup heating.

One sensor and one output or demand respectively can be selected for this function. For thermal disinfection, the temperature at the allocated sensor has to be monitored. Protection is ensured when, during the monitoring period, the disinfection temperature is continuously exceeded for the entire disinfection period.

The monitoring period starts as soon as the temperature at the allocated sensor falls below the disinfection temperature. If the monitoring period ends, the demand activates the backup heating. The disinfection period starts when the temperature at the allocated sensor exceeds the disinfection temperature.

Thermal disinfection can only be completed when the disinfection temperature is exceeded for the duration of the disinfection period without any interruption.

The parameter **Cancellation** is used for adjusting the period after which the backup heating is cancelled. If the backup heating is cancelled, an error message is displayed. Thermal disinfection is cancelled.

Th. Disinfection	Ŧ
Demand	R4
🗆 Circulating pu	ump
Sensor	S4

Starting time delay

If the starting delay option is activated, a starting time for the thermal disinfection with starting delay can be adjusted. The activation of the backup heating is then delayed until that starting time after the monitoring period has ended.

If the monitoring period ends, for example, at 12:00 o'clock, and the starting time has been set to 18:00, the reference relay will be energised with a delay of 6 hours at 18:00 instead of 12:00 o'clock.

With the **TD holid. off** option, thermal disinfection can be deactivated for a phase of absence.

➔ In order to adjust the days of absence, press and hold down button ⑦ for 5 s.

With the **BAS off** option, the thermal disinfection can be switched from automatic mode to **Off** by means of the operating mode switch.

DHW heating

Heating / O	pt. functions	/ Add new	function /	DHW	heating
-------------	---------------	-----------	------------	------------	---------

Adjustment channel	Description	Adjustment range / selection	Factory setting
Demand	Output selection demand	system dependent	-
Mode	Demand mode	Standard, Demand	Standard
Pump/valve	Loading pump/valve option	Yes, No	No
Output	Output selection loading pump	system dependent	-
Overrun time	Overrun option	Yes, No	No
Duration	Overrun time	110 min	1 min
Mode	Operating mode	Zone, Therm.	Therm.
Sensor 1	Allocation reference sensor 1	system dependent	system dependent
Sensor 2	Allocation reference sensor 2 (if mode = Zone)	system dependent	system dependent
TOn	Switch-on temperature	094 °C	50 °C
TOff	Switch-off temperature	195 °C	55 °C
Timer	Timer function	Yes, No	No
Man. heating	Manual heating option	Yes, No	No
Sensor	Switch input selection	system dependent	system dependent
DHW holid. off	DHW heating off when holiday function is active	Yes, No	No
BAS off	Operating mode switch off option	Yes, No	No
Sensor	Allocation operating mode switch input	system dependent	system dependent
Solar off	Solar off option	Yes, No	No
Store	Allocation solar store	all solar stores	-
Stset	Set temperature option	Yes, No	No
SFB off	Solid fuel boiler off option	Yes, No	No
SFB	Allocation solid fuel boiler	all solid fuel boilers	-
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function is used for demanding backup heating for heating the DHW store.

If the **Pump/valve** option is activated, another adjustment channel appears, in which an output can be allocated to the pump/valve. The allocated output will switch on and off with the demand relay.

If the **Overrun** time option is activated, the loading pump remains switched on for the adjusted duration after the demand relay has been switched off.

For the DHW heating, 2 modes are available:

D	HW heating	-
Þ	Demand	R4
	□ Pump/val	ve
	Mode	Therm.
	□ Pump/val Mode	ve Therm

Thermal mode

The allocated demand relay switches on when the temperature at the allocated sensor 1 falls below the adjusted switch-on temperature. If the temperature at the allocated sensor 1 exceeds the adjusted switch-off temperature, the relay switches off.

Zone mode

In this mode, a further sensor can be selected. The switch-on, or the switch-off conditions respectively, then have to be fulfilled at both sensors in order for the output to be switched on or off.

When the **Timer** option is activated, a timer is indicated in which time frames for the function can be adjusted.

For information on timer adjustment see page 105.

With the **Man. heating** option, DHW heating can be activated outside the adjusted time frame once by means of a switch, if the temperature has fallen below the switch-off value.

With the **DHW holid. off** option, DHW heating can be deactivated for a phase of absence.

 \rightarrow In order to adjust the days of absence, press and hold down button \bigcirc for 5 s.

With the **BAS off** option, DHW heating can be switched from automatic mode to **Off** by means of the operating mode switch.

If **Solar off** is activated, DHW heating heating is suppressed when an adjusted store is being loaded.

If the **Stset** option is activated, DHW heating heating is only suppressed when the store temperature exceeds the set store temperature.

If SFB off is activated, DHW heating is suppressed when a selected solid fuel boiler is active.

DHW preheating

Heating / Opt. functions / Add new function / DHW preheat.

Adjustment channel	Description	Adjustment range / selection	Factory setting
Pump	Output selection pump	system dependent	-
Valve	Valve option	Yes, No	No
Valve	Output selection valve	system dependent	-
Temp. sensor	Temperature sensor	system dependent	-
Sen. flow rate	Flow rate sensor	system dependent	-
TMax DHW	DHW maximum temperature	2090 °C	60 °C
Start. speed	Starting speed DHW preheating	20100%	50%
Increment	Increment speed adaptation	1100%	10%
Hysteresis	Hysteresis speed adaptation	0.510.0 K	5.0 K
Delay	Delay time	1 10 s	5 s
ΔT function	Activation ΔT function	Yes, No	No
ΔTOn	Switch-on temperature difference	1.050.0 K	5.0 K
ΔTOff	Switch-off temperature difference	0.549.5 K	3.0 K
Sen. source	Heat source sensor selection	system dependent	-
Sen. sink	Heat sink sensor selection	system dependent	-
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

This function uses heat from a buffer store to heat the cold water inlet of the DHW store.

The controller monitors the flow rate at the selected flow rate sensor. If a flow rate is detected, the pump switches on with the starting speed.

DHW preheat.	
▶ Pump	R4
□Valve	
Temp. sensor	S4

Circulation	Ŧ
🕨 Output	R4
Туре	Thermal
Sensor	S4

If the temperature at the temperature sensor selected exceeds the adjusted DHW maximum temperature, the speed decreases by the **Increment** value. The interval to the next measurement and adaptation can be adjusted by means of the parameter **Delay**.

If the DHW maximum temperature is not reached after the delay time has elapsed, the speed is increased by the increment value. The speed is not increased or decreased respectively within the hysteresis.

If the ΔT function is activated, the pump switches on only if ΔTOn is exceeded, and switches off if the temperature difference falls below $\Delta TOff$.

If the **Valve** option is activated, the output selected is activated when the pump is activated.

Circulation Heating / Opt. functions / Add new function / Circulation

Adjustment		Adjustment range /	
channel	Description	selection	Factory setting
Output	Output selection	system dependent	system dependent
Туре	Variant	Demand, Thermal, Timer, Therm.+Timer, Dem.+- Timer	Thermal
Sensor	Circulation sensor selection	system dependent	system dependent
TOn	Switch-on temperature	1059 °C	40 °C
TOff	Switch-off temperature	1160 °C	45 °C
Timer	Timer function	Yes, No	No
Delay	Demand switch-on delay	03s	0 s
Runtime	Circulation pump runtime	01:0015:00 min	03:00 min
Break time	Circulation pump break time	1060 min	30 min
Funct.	Activation / Deactivation	Activated, Deactivated, Switch	Activated
Sensor	Switch input selection	-	-

The **Circulation** function can be used for controlling a circulation pump. For the control logic, 5 variants are available:

• Thermal

- Timer
- Thermal + Timer
- Demand
- Demand + Timer

Thermal

The temperature at the allocated sensor is monitored. The allocated output switches on when the temperature falls below the adjusted switch-on temperature. If the temperature exceeds the switch-off temperature, the output switches off.

Timer

The output switches on during the adjusted time frames, outside of them it switches off.

Thermal + Timer

The output operates when the switch-on conditions of both above-mentioned variants are fulfilled.

Demand

The allocated flow switch is monitored for circuit continuity. If circuit continuity is detected at the flow switch, the output switches on for the adjusted runtime. After the runtime has ended, the output switches off. During the adjusted break time, the output remains switched off even if continuity is detected at the allocated sensor.

Н	eating :
	HCs
	Opt. functions
Þ	Screed drying

Demand + Timer

The output operates when the switch-on conditions of both above-mentioned variants are fulfilled.

When the **Timer, Therm.+Timer** or **Dem.+Timer** variant is activated, a timer is indicated in which time frames for the function can be adjusted.

i

If the flow switch is connected to the input S1 \dots S8, continuity must be detected for at least 5 s for the controller to react, 1s if the flow switch is connected to an impulse input. NOTE:

For information on timer adjustment see page 105.

9.4 SCREED DRYING

Heating / Screed drying

Adjustment channel	Description	Adjustment range / se- lection	Factory setting
Heating cir- cuits	Heating circuit selection	HC 13	system dependent
TStart	Starting temperature	1030 °C	20 °C
ТМах	Holding temperature	2060 °C	30 °C
Rise	Rise value	1 10 K	2 K
Rise time	Rise duration	124 h	24 h
tBacking	TMax holding time	120 d	5 d
Start	Activation / Deactivation	Yes, No	No

This function is used for time- and temperature-controlled screed drying in selectable heating circuits.

The heating circuits can be selected in the **Heating / Screed drying** menu. At the end of this menu, the function can triggered by using **Start**.

The controller will automatically change to the screed drying status menu. The current **Phase** will be indicated on the display and the **Remaining time** will be indicated as a countdown (dd:hh). During this process, the directional pad flashes green.

At the end of the menu, **Cancel** will be indicated instead of start. If Cancel is selected, screed drying will be cancelled immediately.

At the beginning of the screed drying function, the heating circuits selected are put into operation for the adjusted rise time with the starting temperature as the set flow temperature. Afterwards, the set flow temperature increases in steps by the adjustable rise value for the duration of the adjustable rise time until the holding temperature is reached. After the holding time has elapsed, the set flow temperature is reduced in steps until the starting temperature is reached again.

If the set flow temperature is not reached within 24 hours or after the rise time respectively, or if it is constantly exceeded, the screed drying function will be cancelled.

Screed drying	
▶ HCs	1
TStart	20 °C
ТМах	30 °C
Screed drying	+
🕨 Phase	Heating
Rem. time	
14	⊦d, 23 h
Screed drying	
Cancel?	No
Screed drying	\$
🕨 Rise	2 K
Rise time	24 h
tBacking	5 d

The heating circuit switches off and an error message is displayed. The directional pad glows red.

Error 1: flow sensor defective

Error 2: the flow temperature is higher than the maximum flow temperature + 5 K for over 5 min

Error 3: the flow temperature is higher than the holding temperature + rise value for over 30 min

Error 4: the flow temperature is higher than the set flow temperature + rise value for over 2 h

Error 5: the flow temperature is lower than the set flow temperature - rise value for over a rise time period

During screed drying of the heating circuits selected, the other heating circuits run corresponding to their operating modes.

Button \bigcirc can be used any time for changing to the status or main menu of the controller in order to carry out adjustments.

When the screed drying function has been successfully completed, the corresponding heating circuits will change to their operating modes selected.

Screed drying will automatically be deactivated. The chimney sweeper function will be activated in all heating circuits.

•	Ν
	Ν

NOTE:

Make sure the heating circuits are supplied with heat from a heat source (backup heating).

If an SD card has been inserted into the slot, a screed protocol will be generated.

10. HQM

НQМ

 Add new function back

Add new function
▶ HQM
Impulse counter
back

n Aw	•
Sen. flow	S2
Sen. ret.	S4
□ Sen. flow rate	

In the HQM menu, up to 7 internal heat quantity measurements and 1 impulse counter can be activated and adjusted.

The adjustment of the functions is similar to the adjustment of optional functions, see page 108.

Calorimeter

HQM / Add new function / HQM

Adjustment channel	Description	Adjustment range / selection	Factory setting
Sen. flow	Flow sensor selection	system dependent	system dependent
Sen. ret.	Return sensor selection	system dependent	system dependent
Sen. flow	Flow rate sensor option	Yes, No	No
rate			
Sen. flow	Flow rate sensor selection	system dependent	-
rate			
Fl.rate	Flow rate (only if Sen. flow rate = No)	1.0500.0 l/min	3.0 l/min
Relay	Relay selection	system dependent	-
Fluid type	Heat transfer fluid	Tyfo LS, Propyl., Ethyl.,	Propyl.
		Water	
Concentr.	Glycol concentration in the heat	2070%	45%
	transfer fluid (only if fluid type		
	= propylene glycol or ethylene		
	glycol)		
Alternative	Alternative unit option	Yes, No	No
unit			
Unit	Alternative display unit	Coal, Gas, Oil, CO ₂	CO ₂
Factor	Conversion factor	0.0000001100.0000000	0.5000000
Carryover	Carryover value (for the first-time	-	-
	configuration or after a HQM		
	reset only)		
Funct.	Activation / Deactivation	Activated, Deactivated,	Activated
		Switch	
Sensor	Switch input selection	-	-

If the flow rate sensor option is activated, the impulse input or, if available, a Grundfos Direct Sensor™ can be selected.

The Grundfos Direct Sensors™ will only be available if they have been previously registered in the **Inputs/Modules** menu. The impulse rate must be adjusted in that menu as well.

If the flow rate sensor option is deactivated, the controller calculates the heat quantity by means of a fixed flow rate value. This is called heat quantity balancing. For this purpose, the flow rate must be read from the flowmeter at 100% pump speed and adjusted in the adjustment channel **FI.rate**. In addition to that, a relay must be allocated. Heat quantity balancing is in effect whenever the allocated relay is active.

In the adjustment channel **Fluid type** the heat transfer fluid must be selected. If either propylene glycol or ethylene glycol is selected, the adjustment channel **Concentration** is indicated in which the antifreeze ratio of the heat transfer fluid can be adjusted.

If a calorimeter is being configured for the first time or after the overall quantity has been reset, the parameter **Carryover** appears. A former value which is to be added to the overall quantity can be entered.

When the **Alternative unit** is activated, the controller converts the heat quantity into the quantity of fossil fuels (coal, oil or gas) saved, or the CO_2 emission saved respectively. The alternative unit can be selected. A conversion factor must be adjusted for the calculation. The conversion factor depends on the arrangement in use and has to be determined individually.

10. HQM

Impulse cou	nter 🚽
🕨 Input	IMP
Carryove	er 👘
Funct.	Activated

Impulse counter HQM / Add new function / Impulse counter

Adjustment channel	Description	Adjustment range / selec- tion	Factory setting
Input	Impulse input	IMP	-
Carryover	Carryover value (for the first-time configuration or after a reset only)	-	-
Funct.	Activation / Deactivation	Activated, Deacti- vated, Switch	Activated
Sensor	Switch input selection	-	-

With an impulse counter, the impulses of a device with S0 output can be counted, e.g. for balancing the yield of a PV system.

For this purpose, the impulse input of the controller has to be selected in the **Input** channel. If an impulse counter is being configured for the first time or after the overall quantity has been reset, the parameter Carryover appears. A former value which is to be added to the overall quantity can be entered.

11.BASIC SETTINGS

Basic sett	ings	
🕨 Langu	age	English
🛛 🖾 Auto) DST	•
Date	20.	04.2020

Adjustment channel	Description	Adjustment range / se- lection	Factory setting
Language	Selection of the menu language	Deutsch, English, Français, Italiano, Español, Nederlands, Suomi	Deutsch
Auto DST	Daylight savings time selection	Yes, No	Yes
Date	Adjustment of the date	01.01.200131.12.2050	01.01.2020
Time	Adjustment of the current time	00:0023:59	-
Temp. unit	Temperature unit	°C, °F	°C
Vol. unit	Volume unit	Gallons, Litre	Litre
Press. unit	Pressure unit	psi, bar	bar
Energy unit	Energy unit	kWh, MBTU	kWh
Blocking pro- tect.	Blocking protection submenu	-	-
Start. time	Blocking protection starting time	00:0023:59	12:00
Runtime	Blocking protection runtime	1 30 s	10 s
Reset	back to factory setting	Yes, No	No
Scheme	Scheme selection	00009999	0000

In the **Basic settings** menu, all basic parameters for the controller can be adjusted. Normally, these settings have been made during commissioning. They can be subsequently changed in this menu.

12.SD CARD

SD card	-
🕨 Rem. time	15 d
Options	
Remove card	

SD card			
Adjustment channel	Description	Adjustment range / se- lection	Factory setting
Remove card	Safely remove card	-	-
Save adjust- ments	Save adjustments	-	-
Load adjust- ments	Load adjustments	-	-
Logging int.	Logging interval	00:01 20:00 (mm:ss)	01:00
Logging type	Logging type	Cyclic, Linear	Linear

The controller is equipped with an SD card slot for SD memory cards. With an SD card, the following functions can be carried out:

- Logging measurement and balance values. After the transfer to a computer, the values can be opened and visualised, e.g. in a spreadsheet.
- Store adjustments and parameterisations on the SD card and, if necessary, retrieve them from there.
- Running firmware updates on the controller.

....

The SD card used must be formatted in FAT32.

Firmware updates

When an SD card with a firmware update is inserted, the enquiry **Update?** is indicated on the display.

→ To run the update, select Yes and confirm by pressing button ⑤.

The update will run automatically. The indication **Please wait...** and a progress will bar appear on the display. When the update has been completed, the controller will automatically reboot and run a short initialisation phase.

NOTE:

Only remove the card when the initialisation phase has been completed and the main menu is indicated on the controller display!

➔ To skip the update, select No.

The controller starts normal operation.

NOTE:

The controller will only recognise a firmware update file if it is stored in a folder named **COSMO\MULTI3** on the first level of the SD card.

→ Create a folder named COSMO on the SD card and extract the downloaded ZIP file into this folder.

Starting the logging

- 1. Insert the SD card into the slot.
- 2. Adjust the desired logging type and interval.

Logging will start immediately.

Completing the logging process

- 1. Select the menu item **Remove card...**
- 2. After **Remove card** is displayed, remove the card from the slot.

When **Linear** is adjusted in the logging type adjustment channel, data logging will stop if the capacity limit is reached. The message **Card full** will be displayed.

If **Cyclic** is adjusted, the oldest data logged onto the SD card will be overwritten as soon as the capacity limit is reached.

•	NOTE:
L	Becau

Because of the increasing size of the data packets, the remaining logging time does not decrease linearly. The data packet size can increase, e.g. with the increasing operating hours value.

12.SD CARD

Storing controller adjustments

➔ To store the controller adjustments on the SD card, select the menu item Save adjustments.

While the adjustments are being stored, first **Please wait...**, then **Done!** will be indicated on the display. The controller adjustments are stored as a .SET file on the SD card.

Loading controller adjustments

1. To load controller adjustments from an SD card, select the menu item **Load adjustments**.

The **file selection** window will appear.

2. Select the desired .SET file.

While the adjustments are being loaded, first **Please wait...**, then **Done!** will be indicated on the display.

The controller will only recognise a .SET file if it is stored in a folder named $\ensuremath{\text{COSMO}}\$

removing the card.

NOTE: To safely remove the SD card, always select the menu item **Remove card...** before

13. MANUAL MODE

Manual mode	-
All outputs	
Controller	
Relay 1	Auto

Manual n	node
----------	------

Adjustment channel	Description	Adjustment range / selection	Factory set- ting
All outputs	Selection operating mode of all relays	Auto, Off	Off
Relay 1X	Operating mode of relay	On, Auto, Off	Auto
Output AB	Operating mode of signal output	On, Max., Auto, Min., Off	Auto
Demand 1 (2)	Operating mode of demand	Max., Auto, Min., Off	Auto
Pump 1 (2)	Operating mode of pump	Max., Auto, Min., Off	Auto
Valve 1 (2)	Operating mode of valve	Max., Auto, Min., Off	Auto

In the Manual mode menu, the operating mode of all outputs in the controller and in modules connected can be adjusted.

In the All outputs... menu, all outputs can at once be switched off (Off) or set to automatic mode (Auto):

- Off = Output is switched off (manual mode)
- Auto = Output is in automatic mode

The operating mode can be selected for each individual output, too. The following options are available:

- Off = Output is switched off (manual mode)
- On = Output is active at 100% speed (manual mode)
- Auto = Output is in automatic mode
- Min. = Output is active at minimum speed (manual mode)
- Max. = Output is active at maximum speed (manual mode)

NOTE:

After service and maintenance work, the relay mode must be set back to Auto. In manual mode the control logic is suspended.

	Relay 1
	O On
Þ	● Auto
	OOff
_	

14.USER CODE

User co	ode:	
	<u>0000</u>	

In the **User code** menu, a user code can be entered. Each number of the 4-digit code must be individually adjusted and confirmed. After the last digit has been confirmed, the menu automatically jumps to the superior menu level.

To access the menu areas of the installer level, the installer user code must be entered: Installer: 0262

For safety reasons, the user code should generally be set to the customer code before the controller is handed to the customer! Customer: 0000

173

15.INPUTS/MODULES

Inputs / Modules					
Þ	Modules				
	Inputs				
	back				
M	1odules 🗸 🗸				
F	🗵 Module 1				
	🗆 Module 2				
	🗆 Module 3				

Controller

>>

>>

Inputs

S1

S2

In the Inputs/Modules menu, external modules can be registered and sensor offsets be

15.1 MODULES

adjusted.

In this menu, up to 3 external modules can be registered. All modules connected and acknowledged by the controller are available.

→ To register a module, select the corresponding menu item by pressing button ⑤.

The checkbox indicates the selection. If a module is registered, all its sensor inputs and relay outputs will be available in the corresponding controller menus.

Inputs/Modules/Modules

Adjustment channel	Description	Adjustment range / selection	Factory setting
Module 13	Registering external modules	-	-

15.2 INPUTS

In this submenu, the type of the sensor connected can be adjusted for each individual input. The following types can be selected:

S1 S10:	Switch, Fern (remote control), BAS (operating mode switch), Pt1000, Pt500,
	KTY, None

IMP:	Non-adjustable
------	----------------

• Ga1, Ga2: RH, RPS, VFS, None

ATTENTION SYSTEM DAMAGE!

Selecting the wrong sensor type will lead to unwanted control behaviour. In the worst case, system damage can occur!

→ Make sure that the right sensor type is selected!

If **KTY**, **Pt500** or **Pt1000** is selected, the channel **Offset** will appear, in which an individual offset can be adjusted for each sensor.

- 1. In order to select a sensor for the offset adjustment, select the corresponding menu item by pressing button (s).
- 2. To adjust the sensor offset, select the desired value by pressing buttons 🕑 or 🔄, then confirm by pressing button (s).

NOTE:

æ

If a sensor is used as the temperature sensor of a function, the sensor types **Switch**, **Fern**, **BAS**, **Impulse** and **none** will not be available for the corresponding input.

ATTENTION DAMAGE TO THE DEVICE!

per Sei

Sensor inputs which have been set to the sensor type switch can only be used for connecting potential-free switches.

If **Switch** is selected, the **Inverted** option will appear and can be used for inverting the behaviour of the switch.

NOTE:

When Grundfos Direct Sensors™ are used, connect the sensor ground common terminal block to PE (see page 99).

Offset		
	о.ų к	
-15.0	▲ = 0.0	15.0

174

15.INPUTS/MODULES

Inputs/Modules/Inputs

•	· ·		
Adjustment channel	Description	Adjustment range / selection	Factory set- ting
S1 S10	Sensor input selection	-	-
Туре	Sensor type selection	Switch, Fern, BAS, KTY, Pt500, Pt1000, None	Pt1000
Offset	Sensor offset	-15.0+15.0 K	0.0 K
IMP	Impulse input selection	-	-
Туре	Sensor type selection	Impulse, Switch, Fern, BAS, KTY, Pt500, Pt1000, None	Impulse
Inverted	Switch inversion (only when Type = Switch)	Yes, No	No
Vol./Imp.	Impulse rate	0.1100.0	1.0
Offset	Delete offset	Yes, No	No
Ga1, 2	Analogue Grundfos Direct Sensor™ 1, 2	-	-
Туре	Grundfos-Direct-Sensor™ type	RPS, VFS, RH, None	None
Max.	Maximum pressure (if Type = RPS)	0.0 16.0 bar	6 bar
Min.	Minimum flow rate (if Type = VFS)	1399 l/min	2 l/min
Max.	Maximum flow rate (if Type = VFS)	2400 l/min	40 l/min
Offset	Sensor offset	-15.0+15.0 K	0.0 K
FR1	Frequency input	-	-
Туре	Sensor type selection	DN20, DN25, DN32, VTY20MA, None	None

15.3 RC

The **RC** submenu currently has no function.

If a malfunction occurs, a message will appear on the display of the controller.

WARNING DANGER OF ELECTRIC SHOCK!

Upon opening the housing, live parts are exposed! → Always disconnect the device from power supply before open-

ing the housing! The controller is protected by a fuse. The fuse holder (which also holds the spare fuse) becomes

accessible when the cover is removed. To replace the fuse, pull the fuse holder from the base.

Directional pad flashes red.

Sensor fault. The message **!Sensor fault** instead of a temperature is shown on the sensor display channel.

Short circuit or line break.

Disconnected temperature sensors can be checked with an ohmmeter. Please check if the resistance values correspond with the table.

					V	,				
°C	°F	Ω	Ω	Ω		°C	°F	Ω	Ω	Ω
		Pt500	Pt1000	KTY				Pt500	Pt1000	KTY
-10	14	481	961	1499		55	131	607	1213	2502
-5	23	490	980	1565		60	140	616	1232	2592
0	32	500	1000	1633		65	149	626	1252	2684
5	41	510	1019	1702		70	158	636	1271	2778
10	50	520	1039	1774		75	167	645	1290	2874
15	59	529	1058	1847		80	176	655	1309	2971
20	68	539	1078	1922		85	185	664	1328	3071
25	77	549	1097	2000		90	194	634	1347	3172
30	86	559	1117	2079		95	203	683	1366	3275
35	95	568	1136	2159		100	212	693	1385	3380
40	104	578	1155	2242		105	221	702	1404	3484
45	113	588	1175	2327		110	230	712	1423	3590
50	122	597	1194	2413		115	239	721	1442	3695

The display is permanently off. Press button (5). Display illuminated? yes no Controller has been in standby, everything OK Check the power supply of the controller. Is it disconnected? no yes The fuse of the controller could Check the supply line and be blown. The fuse holder (which reconnect it. holds the spare fuse) becomes accessible when the cover is removed. The fuse can then be replaced.

Circulation pump and blocking valve should be switched off for 1 night; less store losses? yes no Check the non-return valve in warm water circulation - o.k. yes no	Check whether the pumps of the after-heating circuit run at night; check whether the non-return valve is defective; problem solved? no Further pumps which are con- nected to the solar store must also be checked.
The gravitation circulation	Clean or replace it.
in the circulation line is too strong; insert a stronger valve in the non-return valve or an	electrical 2-port valve behind the circulation pump; the 2-port valve is open when the pump is activated, otherwise it is closed; connect pump and 2-port valve electrically in parallel; activate the circulation again. Deactivate pump speed control!

17.INDEX

Symbols

0-10 V boiler control	151
Α	
Antifreeze function	156
Арр	154

В

Backup cooling, heating circuit	7
Backup heating, heating circuit	5
Boiler control	0

С

Calorimeter	. 167
Chimney sweeper function	. 156
Collector cooling. Cooling mode	. 136
Collector emergency shutdown	. 129
Collector emergency temperature	. 128
Collector minimum limitation	. 128
Commissioning menu	. 113
Controller adjustments, loading of	. 171
Cooling mode	. 135
Cooling system	. 156
Correction modes	. 155
Countdown	. 156

D

Data logging	. 170
Day correction	. 153
Day/Night operation	. 154
Day operation	. 155
Dew point	. 156

Ε

Electrical connection	
Error messages	126
Error messages, acknowledgement of	126

F

Function block	
Fuse, replacing of	176

Н

Heat dump	107
near dunip	137
Heating circuit mixer	152
Heating circuit pump	152
Heating curve	153
HE pump	99
Holiday function	141

I

М

Maximum flow temperature	
Maximum store temperature	129
Minimum flow temperature	
Mixer runtime	
Modulating heating control	
Mounting	
17.INDEX

Ν

0	
Night operation	
Night correction	153

-	-	

Offset	174
Operating mode, outputs	172
Operating mode switch	
Output selection	

Ρ

Priority logic	29

R

Registering external modules	
Remote access, heating circuit	
Remote control	
Room control, heating circuit	
Room control unit	154

S

Screed drying	165
Sensor offset	174
Set flow temperature	153
Set store temperature	129
Shared relays	150
Spreaded loading	130
Starting temperature	165
Store cooling, Cooling mode	136
Store sequence control	130
Storing controller adjustments	171
System cooling, Cooling mode	135
, 0. 0	

Т

Technical data	
Thermal disinfection	
Thermostat function	
Timer	104

U

User co	de	173
v		
VBus®		. 99

18.EU DECLARATION OF CONFORMITY

COSMO GMBH

Brandstücken 31 22549 Hamburg

For the following product

COSMO Multi 3

it is herewith confirmed that it complies with the standards, which are determined in Council Directives on the approximation of the laws of the Member states.

For the evaluation of the product, the following directives and standards were used in the version current at the date of issue:

Referenz	Titel
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive
2011/65/EU	RoHS II
Referenz	Titel
EN 55014-1: 2012-05	Electromagnetic Compatibility – Part 1
EN 55014-2: 2016-01	Electromagnetic Compatibility – Part 2
EN 60335-1: 2014-11	Household and similar electrical appliances – Safety
EN 60730-1: 2012-10	Automatic electronic controls for household and similar use
EN 60730-2-9: 2011-07	Automatic electronic controls for household and similar use Particular requirements for temperature sensing controls

19. GUARANTEE, WARRANTY, AVAILABILITY GUARANTEE, IMPRINT

COSMO GmbH

Brandstücken 31 22549 Hamburg Geschäftsführer: Hermann-Josef Lüken Tel: +49 40 80030430 HRB 109633 (Amtsgericht Hamburg) info@cosmo-info.de www.cosmo-info.de

1st issue Feb 2023

Subject to technical changes, errors excepted. All images, dimensions, product- and designrelated information are valid at the date of printing.

We reserve the right to make technical changes as well as changes in colour and form of the illustrated products without notice.

Colours may differ due to printing process. Model and product claims cannot be asserted.

Within the scope of the currently valid legal provisions of the purchase contract law (German Civil Code (BGB) in regard to warranty claims for defects), a limitation period of 5 years from delivery applies to COSMO.

COSMO GMBH Brandstücken 31 · 22549 Hamburg

info@cosmo-info.de www.cosmo-info.de